Superconductivity and Magnetism in Topological Half-Heusler Semimetals

Yasuyuki Nakajima¹, Rongwei Hu¹, Kevin Kirshenbaum¹, Alex Hughes¹ Paul Syers¹, Xiangfeng Wang¹, Kefeng Wang¹, Renxiong Wang¹, Shanta Saha¹, Daniel Pratt², Jeffrey W Lynn², Johnpierre Paglione¹

> ¹University of Maryland, College Park ²NIST, Center for Neutron research

Sci. Adv. 1, e1500242

Center for Nanophysics & Advanced Materials

Yasuyuki Nakajima

Outline

- Introduction:
 - Topological insulator: a new quantum state of matter
 - Half Heusler semimetal RPdBi:
 promising candidate for a topological material
- Experimental Results for RPdBi:
 - Magnetic susceptibility: Localized f electrons
 - Neutron diffraction: Antiferromagnetism
 - Charge transport and magnetic measurements: Superconductivity
- Discussion:
 - Realization of peculiar superconductivity: Singlet-triplet mixing, Magnetic SC, BCS-BEC crossover
- Summary

Topological Insulator

Phase transition **Breaking symmetry**

Crystal: Broken translational symmetry

Magnet: Broken rotational symmetry

Superconductor: Broken gauge symmetry

Topological insulator

absence of symmetry breaking

e.g. Quantum spin Hall state 2D topological insulator chiral boundary state

New quantum phase of matter

Schematic of the spin-polarized edge channels in a quantum spin Hall insulator. M. Konig *et al.* Science (2007)

MARYLAND

Yasuyuki Nakajima

Topological Insulator

3D Topological insulator

L. Fu et al. Phys. Rev. Lett. (2007)

Metallic surface state protected against time reversal invariant perturbations

Topological order with symmetry breaking

Unusual collective modes predicted in particle physics

Majorana fermion Charge neutral $\hat{c}^{\dagger} = \hat{c}$ Axion

Anomalous magnetoelectric effect

$$\mathbf{M} = -(e^2/4\pi\hbar c)\theta\mathbf{E}$$

 $\boldsymbol{\theta}:$ axion field

R. Li et al. Nat. Phys. (2010)

Topological order + Magnetism

MARYLAND

Half Heulser semimetals

At the border between trivial and topological states

Yasuyuki Nakajima

Rare earth based RPdBi

RPdBi: Promising tunable topological materials with (multi-)symmetry breaking

(a) 1.5 1.2 0.9 0.6 0.2 0.1 $\mu_0H = 0.1T$ K. Gofryk et al. PRB (2011)

Antiferromagnetism

Superconductivity **YPtBi** LuPtBi 0.8 YPtBi 100 2.5 LuPtBi 80 0.6 R ρ (μΩ cm) 60 40 (mg cm) d Р_н (ст³/С) χ (arb. units) 1 kHz 0.04 Oe 0.8 0.6 (arb 0.2 20 0.4 0.5 04 06 08 1.2 1.4 0.5 1.5 0 2 T (K) 50 100 150 200 250 300 0 T (K) N. Butch et al. PRB (2011) F. Tafti et al. PRB (2013) **RPtBi**

single crystal

RPdBi polycrystalline samples

Yasuyuki Nakajima

Sample preparation

Single crystal Self-flux method R: Pd: Bi = 1:1:5-10

Magnetic susceptibility

Currie-Weiss behavior	M _	C
	\overline{H} -	$\overline{T - \Theta_W}$

 Θ_W : Weiss temperature

f electrons: well-localized

Low temperature anomaly associated with AFM

R	T_N (K)	Θ_W (K)	$\mu_{e\!f\!f}~(\mu_B)$	$\mu_{free}~(\mu_B)$
Sm	3.4	-258	1.9	0.85
Gd	13.2	-49.6	7.66	7.94
Tb	5.1	-28.9	9.79	9.72
Dy	2.7	-14.3	10.58	10.65
Но	1.9	-9.4	10.6	10.6
Er	1.0	-4.8	9.18	9.58
Tm	< 0.4	-1.7	7.32	7.56

Neutron diffraction

Charge transport

S MARYLAND

Charge transport

Surface Fermi surface in RPtBi

C. Liu et al. PRB (2011)

not inconsistent with TI properties

Semi-metallic behavior n ~ 10^{19} cm⁻³

Consistent with band calculations

Carrier: Hole

MARYLAND

Superconductivity

Low temperature

Superconductivity except for Gd

Large but non-saturating screening Extremely small H_{c1}

Extremely long penetration depth due to low carrier density

 $H_{c1} \propto \lambda^{-2} \quad \lambda \propto 1$

Superconductivity

Huge field dependence of magnetic susceptibility

T.V. Bay et al. Solid State Commun. (2014)

Large but non-saturating screening Extremely small H_{c1} Extremely long penetration depth due to the low carrier density $H_{c1} \propto \lambda^{-2} \quad \lambda \propto \sqrt{\frac{m}{n}}$

Lack of heat capacity jump

$$C/T = \gamma_n + \beta T^2$$

 $\gamma_n = 0.0 \pm 0.5 \text{ mJ/mol K}^2$

Low carrier density $n \sim 10^{19} \ cm^{-3} \\ m^* \sim 0.09 m_e$

W. Wang et al. Sci. Rep. (2013)

 $\Delta C/\gamma_n T_c = 1.43$ $\Delta C/T < 0.2 \text{ mJ/mol K}^2$ beyond the resolution

Dominant triplet pairing?

A1 phase of superfluid ³He

D.Vollhardt and P.Wolfle, The Super fluid Phases of Helium 3 (1990)

Non-centrosymmetric SC

c.f. heavy fermion SC CePt₃Si

Nodal SC in half Heusler

Theoretical Fermi surface

Tuning dominant contribution of singlet/triplet paring states

Finite triplet component

WHH theory N.Werthamer et al. PR (1966) $H_{c2}(0) = -\alpha T_c \left. \frac{dH_{c2}}{dT} \right|_{T=T_c}$ $\alpha = 0.69 \text{ dirty SC}$ $\alpha = 0.74 \text{ clean SC}$

exceeding of orbital depairing field

 $\begin{array}{lll} \mbox{YPdBi:} & \mu_0 H_{c2}(0) = 2.7 \ \mbox{T}, \ \alpha = 0.82 \\ \mbox{LuPdBi:} & = 2.9 \ \mbox{T}, \ \alpha = 0.91 \\ \mbox{DyPdBi:} & = 0.7 \ \mbox{T}, \ \alpha = 0.93 \end{array}$

Finite triplet component?

Magnetic superconductivity

Anticorrelation between T_c and T_N , well-scaled by de Gennes factor

BCS-BEC crossover?

 ϕ_0 : flux quantum

Average inter-electron distance $d_{e-e} \sim n^{-1/3} \sim 5 \text{ nm}$ $n \sim 10^{19} \text{cm}^{-3}$ $\xi \sim d_{e-e}$

Exotic superconducting state?

 $\xi \gg d_{e-e}$

 $\xi \ll d_{e-e}$

M. Randeria et al. Nature Physics (2010)

Summary

We have studied superconductivity and magnetism in the topological half semimetal RPdBi.

- fcc type II AFM with Q = (1/2, 1/2, 1/2)
- Anticorrelation between $T_{\rm c}$ and $T_{\rm N},$ well-scaled by de Gennes factor
- Anomalous SC: Triplet dominant? BCS-BEC crossover?

Strong candidate for tunable topological materials with multi-symmetry breaking

Combination of topological and symmetry-breaking order

	SC	AFM	Торо
Υ	\checkmark	×	×
Lu	\checkmark	×	\checkmark
Tm	\checkmark	√ (?)	\checkmark
Er	\checkmark	\checkmark	\checkmark
Sm	\checkmark	\checkmark	×
Но	\checkmark	\checkmark	\checkmark
Dy	\checkmark	\checkmark	×
Tb	√ (?)	\checkmark	×
Gd	×	\checkmark	×

