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AUTHORS’ SUMMARY

The discovery more than 25
years ago of the quantum
Hall effect (1), in which the

“Hall,” or “transverse electrical” con-
ductance of a material is quantized,
came as a total surprise to the physics
community. This effect occurs in
layered metals at high magnetic
fields and results from the forma-
tion of conducting one-dimensional
channels that develop at the edges
of the sample. Each of these edge
channels, in which the current moves
only in one direction, exhibits a quan-
tized conductance that is character-
istic of one-dimensional transport. The
number of edge channels in the sam-
ple is directly related to the value of
the quantumHall conductance.More-
over, the charge carriers in these chan-
nels are very resistant to scattering.
Not only can the quantum Hall effect be observed in macroscopic samples
for this reason, but within the channels, charge carriers can be transported
without energy dissipation. Therefore, quantum Hall edge channels may be
useful for applications in integrated circuit technology, where power dis-
sipation is becomingmore andmore of a problem as devices become smaller.
Of course, there are some formidable obstacles to overcome—the quantum
Hall effect only occurs at low temperatures and high magnetic fields.

In the past few years, theoretical physicists have suggested that
edge channel transport of current might be possible in the absence of a
magnetic field. They predicted (2–4) that in insulators with suitable
electronic structure, edge states would develop where—and this is
different from the quantum Hall effect—the carriers with opposite
spins move in opposite directions on a given edge, as shown sche-
matically in the figure. This is the quantum spin Hall effect, and its
observation has been hotly pursued in the field.

Although there are many insulators in nature, most of them do not have
the right structural properties to allow the quantum spin Hall effect to be
observed. This is where HgTe comes in. Bulk HgTe is a II-VI semi-
conductor, but has a peculiar electronic structure: In most such materials,
the conduction band usually derives from s-states located on the group II
atoms, and the valence band from p-states at the VI atoms. In HgTe this
order is inverted, however (5). Using molecular beam epitaxy, we can
grow thin HgTe quantum wells, sandwiched between (Hg,Cd)Te barriers,
that offer a unique way to tune the electronic structure of the material: When
the quantum well is wide, the electronic structure in the well remains
inverted. However, for narrow wells, it is possible to obtain a “normal”
alignment of the quantumwell states. Recently, Bernevig et al. (6) predicted

theoretically that the electronic
structure of inverted HgTe quan-
tum wells exhibits the properties
that should enable an observation
of the quantum spin Hall insula-
tor state. Our experimental obser-
vations confirm this.

These experiments only be-
came possible after the devel-
opment of quantum wells of
sufficiently high carrier mobility,
combined with the lithographic
techniques needed to pattern the
sample. The patterning is espe-
cially difficult because of the very
high volatility of Hg. Moreover,
we have developed a special low–
deposition temperature Si-O-N
gate insulator (7), which allows
us to control the Fermi level (the
energy level up to which all

electronics states are filled) in the quantum well from the conduction band,
through the insulating gap, and into the valence band. Using both electron
beam and optical lithography, we have fabricated simple rectangular
structures in various sizes from quantum wells of varying width and
measured the conductance as a function of gate voltage.

We observe that samples made from narrow quantum wells with a
“normal” electronic structure basically show zero conductance when the
Fermi level is inside the gap. Quantum wells with an inverted electronic
structure, by contrast, show a conductance close to what is expected for the
edge channel transport in a quantum spin Hall insulator. This interpretation
is further corroborated by magnetoresistance data. For example, high–
magnetic field data on samples with an inverted electronic structure show a
very unusual insulator-metal-insulator transition as a function of field,
which we demonstrate is a direct consequence of the electronic structure.

The spin-polarized character of the edge channels still needs to be
unequivocably demonstrated. For applications of the effect in actual
microelectronic technology, this low-temperature effect (we observe it
below 10 K) will have to be demonstrated at room temperature, which may
be possible in wells with wider gaps.
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Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.
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3D Topological insulator
Metallic surface state protected against time reversal 
invariant perturbations
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leads to a band structure that describes 
the relationship between the energy and 
momentum of the electrons (or holes). 
This band structure typically consists of 
a conduction band composed of bonding 
orbitals (which have symmetric wave 
functions), and a valence band composed of 
antibonding orbitals (antisymmetric wave 
functions). In an insulator the Fermi energy 
lies in the bandgap between the minimum 
of the conduction band and the maximum 
of the valence band. The situation changes 
at the surface of a 3D host (or the edge of 
a 2D host) and new electron states appear 
at these boundaries. Depending on doping 
and crystal structure, the Fermi level may 
intersect either the conduction or valence 
band at the boundary, which will lead to 
conducting behaviour. However, if the Fermi 
level does not intersect either band, the 
boundary will remain insulating (Fig. 2a).

The situation becomes very interesting 
if spin–orbit coupling (Fig. 3) is added to 

the picture. In a semiconductor, spin–orbit 
coupling typically leads to various effects, 
such as warping of the valence band and 
the splitting of spin degeneracies. (The 
spin-up and spin-down electrons in a 
conventional semiconductor tend to have 
the same energy.) However, if the spin–
orbit coupling is sufficiently large, it can 
actually lead to antisymmetric states having 
higher energies than symmetric states 
in certain regions of momentum space 
(whereas antisymmetric states normally 
have lower energies). This inversion leads 
to topological ‘twists’ in the band structure 
(Fig. 2b,c).

The changes caused by spin–orbit 
coupling can be even more dramatic at 
the boundary, with the conduction and 
valence bands actually crossing over. If the 
host is 3D and the valence and conduction 
bands cross over twice (or an even number 
of times), the 2D surface states form a 
pair of Dirac cones (Fig. 2c) — this is 

similar in some ways to what is found in 
graphene. However, if the host is 3D and 
the valence and conduction bands cross 
over once (or an odd number of times), 
the 2D surface states are completely 
different: indeed, theorists have shown that 
these even and odd boundary states are 
topologically distinct.

A distinguishing characteristic of the 
odd states (which are known as strong 
topological insulators) is that backscattering 
is forbidden: this means that electrons can, 
in principle, propagate with little or no 
resistance along the edge or surface of the 
system — even if the host is an insulator. 
This is a property that could prove to be 
very useful for applications. To see why 
backscattering is forbidden, consider Fig. 2b: 
if an electron is backscattered so that its 
momentum (k) is changed from +k to –k, 
then its spin must also be flipped from up to 
down, or vice versa. However, something is 
needed to flip the spin, such as a magnetic 
impurity or a magnetic field. If nothing 
is available to flip the spin, the electrons 
cannot be backscattered, so they can travel 
along the boundary unimpeded. If we look 
at Fig. 2c, we can see that it is possible to 
backscatter an electron without flipping 
its spin in a system where there is an even 
number of twists.

The first topological insulators were 
2D hosts with a spin structure on a 
1D edge (known as the quantum spin 
Hall effect). They were first elaborated 
theoretically1–3, then predicted in a 
specific HgTe heterostructure system4, and 
experimentally verified in a carefully tuned 
nanostructure5. The speed of the theoretical 
and experimental cycle was remarkable and 
a testament to the skill of the investigators 
involved, as well as to the mature state 
of nanofabrication technologies such as 
molecular beam epitaxy. Then, the 3D 
version of topological insulators was 
proposed6, predicted in a BiSb alloy7, and 
experimentally detected by angle-resolved 
photoemission spectroscopy (ARPES)8. 
Again it was a stunning sequence of 
developments that launched a new field.

As the 3D topological insulators have 
surface states with chiral patterns of spins 
in momentum space (Fig. 3), surface-
sensitive techniques such as ARPES and 
scanning tunnelling microscopy (STM) 
have been unleashed in full force on 
these materials. The Fermi ‘surface’ of 
the 2D boundary state is a circle and can 
be represented by a closed strip (Fig. 2, 
bottom panels). As the spin–orbit coupling 
increases, and the band structure changes 
shape, twists are introduced into the strip 
that represents the Fermi surface. Again 
the properties of the system depend on 
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Figure 2 | Topological insulators and band structures. a, The conduction and valence bands of a 
typical 3D solid (middle section). The shaded regions are the bands in the bulk of the solid, and the 
thick black lines are the bands at the surface. (Similar behaviour is observed in a 2D system with a 
1D boundary.) In general, the conduction band is symmetric (red), the valence band is antisymmetric 
(blue), and spin-up and spin-down electrons (black arrows) have the same energy. En, E0 and Ep are 
the Fermi energies of a negatively doped, neutral and positively doped solid, respectively. If the Fermi 
energy lies in the energy gap between the conduction and valence bands, the solid is an insulator; if it 
intersects either band, the material will conduct electric charge. The top image shows the conduction 
and valence bands as strings, and the closed strip in the bottom section represents the Fermi surface. 
b, Spin–orbit coupling lifts the degeneracy of the electron spins and leads to other changes: in the 
bulk, for example, the conduction band becomes antisymmetric (–) and the valence band becomes 
symmetric (+) for positive momenta. At the boundary the bands (the red and blue lines) actually 
cross over each other, and the Fermi energy is forced to intersect both bands, which results in the 
conduction of electric charge along the boundary. The flow of charge is not impeded by obstacles in 
this example because, as explained in the text, it is not possible for electrons to be backscattered. 
The electron current in a particular direction is spin-polarized and robust against perturbations such 
as disorder and interactions. c, Increasing the spin–orbit coupling further leads to more changes. 
Electrons can be backscattered in this system.
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H.C. Manoharan et al. Nat. Nano (2010) All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.
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FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.
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Figure 1 | Strong spin–orbit interaction gives rise to a single SS Dirac cone. Theory (see the Methods section) versus experiments. a,b, High-resolution
ARPES measurements of surface electronic band dispersion on Bi2Se3(111). Electron dispersion data measured with an incident photon energy of 22 eV
near the 0-point along the 0–M (a) and 0–K (b) momentum-space cuts. c, The momentum distribution curves corresponding to a suggest that two
surface bands converge into a single Dirac point at 0. The V-shaped pure SS band pair observed in a–c is nearly isotropic in the momentum plane, forming
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space (where k

x

and k

y

are in the 0–K and 0–M directions, respectively). The U-shaped broad continuum feature inside
the V-shaped SS corresponds roughly to the bottom of the conduction band (see the text). d, A schematic diagram of the full bulk three-dimensional BZ of
Bi2Se3 and the two-dimensional BZ of the projected (111) surface. e, The surface Fermi surface (FS) of the two-dimensional SSs along the K–0–M
momentum-space cut is a single ring centred at 0 if the chemical potential is inside the bulk bandgap. The band responsible for this ring is singly
degenerate in theory. The TRIMs on the (111) surface BZ are located at 0 and the three M points. The TRIMs are marked by the red dots. In the presence of
strong spin–orbit coupling (SOC), the surface band crosses the Fermi level only once between two TRIMs, namely 0 and M; this ensures the existence of a
⇡ Berry phase on the surface. f, The corresponding local density approximation (LDA) band structure (see the Methods section). Bulk band projections are
represented by the shaded areas. The band-structure topology calculated in the presence of SOC is presented in blue and that without SOC is in green. No
pure surface band is observed to lie within the insulating gap in the absence of SOC (black lines) in the theoretical calculation. One pure gapless surface
band is observed between 0 and M when SOC is included (red dotted lines).

experiment. The ‘V’ bands cross EF at 0.09Å�1 along 0–M and at
0.10Å�1 along 0–K, and have nearly equal band velocities, approx-
imately 5⇥105 m s�1, along the two directions. A continuum-like
manifold of states—a filled U-shaped feature—is observed inside
the V-shaped band pair. All of these experimentally observed
features can be identified, to first order, by a direct one-to-one
comparison with the LDA band calculations. Figure 1f shows the
theoretically calculated (see the Methods section) (111)-surface
electronic structure of bulk Bi2Se3 along the K–0–M k-space cut.

The calculated band structure with and without SOC are overlaid
together for comparison. The bulk band projection continuum on
the (111) surface is represented by the shaded areas, blue with
SOC and green without SOC. In the bulk, time-reversal symmetry
demands E(k,") = E(�k,#) whereas space inversion symmetry
demands E(k,") = E(�k,"). Therefore, all the bulk bands are
doubly degenerate. However, because space inversion symmetry
is broken at the terminated surface in the experiment, SSs are
generally spin-split on the surface by spin–orbit interactions except
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comes to naught — a manifestation of Pauli’s 
exclusion principle. Second, for two distinct 
(orthogonal) states j and k,

 k k k j kj j kj j

which is a consequence of the antisymmetry 
of Fermi–Dirac statistics. Third,

 j j k k

which is the completeness relation.
In this formalism, particle–hole 

interchange (charge conjugation) is 
implemented by cj  cj

†. Because electrons 
and holes have opposite charge, they are 
not their own antiparticles and therefore 
not Majorana fermions. Excitons, on the 
other hand, are bound states of electrons 
and holes, and thus, in the language of 
second quantization, they are created by 
combinations of electron and hole operators, 
of the general form cj

†ck + ckcj
†. Under 

charge conjugation, this exciton ‘creation’ 
operator goes over into itself, and therefore 
the excitations it creates are their own 
antiparticles. But conventional excitons are 
always bosons, with integer spin, and thus 
can make no call on Majorana’s legerdemain. 
In this sense they are analogous to the 
photons of conventional particle physics.

Superconductors to the rescue
So can there ever be a solid-state situation 
in which half-integer-spin particles are their 
own antiparticles? At first sight it seems 
hopeless to realize Majorana fermions from 
the raw material of electrons in solids, 
simply because electrons are charged, and 
therefore definitely different from their 
antimatter counterparts, the (oppositely 
charged) holes. But superconductivity 
changes the picture13, because in 
superconductors the absolute distinction 
between electrons and holes is blurred 
(Fig. 1b,c). In such materials, electrons 
form so-called Cooper pairs, which, owing 
to their boson-like nature, can form a 
dense ‘condensate’, unimpeded by the Pauli 
exclusion principle. Indeed, it is just this 
condensate that, theoretically, is responsible 
for superconductivity13.

As a consequence, electron number 
is in effect no longer conserved: two 
electrons (in a Cooper pair) can be added 
or subtracted from the condensate without 
substantially changing its properties. 
Crucially too, the superconductor screens 
electric and confines magnetic fields so that 
charge is no longer observable (Fig. 1c). 
Thus, in a superconductor the most 
daunting barrier to producing Majorana-
like excitations — the charge-conjugation 
hurdle — seems vulnerable.

Indeed, already in the earliest days 
following Bardeen, Cooper and Schrieffer’s 
triumphant theory of superconductivity 
(BCS theory)14, it was realized that certain 
fermionic modes in the superconducting 
state are created by mixtures of what 
were, in the normal state, electron and 
hole operators. In physical terms, a 
(normal state) electron mode can lower its 
energy, in the superconducting state, by 
mixing with a (normal state) hole mode 
attached to a Cooper pair. Mathematically, 
this phenomenon is encoded in the 
Bogoliubov–Valatin formalism13. Therein 
one finds that the creation operators for 
modes in the superconducting state are 
mixtures of electron and hole creation 
operators, in the form cosθ cj + sinθ ck

†. 
But electrons in such Bogoliubov–
Valatin modes are not exactly their own 
antiparticles (except accidentally, in the 
specific case j = k and θ = ± π/4) and 
thus, such modes are not a realization of 
Majorana fermions.

However, there are certain types of 
superconductor in which Majorana-type 
excitations are predicted to emerge. For 
instance, some superconductors can 
contain magnetic flux tubes, also known 
as Abrikosov vortices15, the presence of 
which alters the equations for the electrons. 
In particular, depending on the kind 
of superconductor and the electronic 
spectrum, the vortices may trap so-called 
zero modes, spin-1/2 ‘excitons’ of very low 
(formally, zero) energy. The zero modes 
are discrete; there are a finite number 
associated with each vortex. The existence of 
these modes is related to a profound result 
in mathematics, the Atiyah–Singer index 
theorem, which connects the existence of 

special, symmetric solutions of differential 
equations to the topology of the parameters 
that appear in those equations16.

The zero modes are mixtures of particles 
and holes in equal measure, and thus 
one can call the quasiparticles associated 
with these zero modes ‘partiholes’. Such 
partiholes differ crucially from conventional 
excitons. They are created by operators of 
the form γj = cj

† + cj. As γj is left invariant by 
the charge conjugation, c  c†, partihole 
operators create localized spin-½ particles 
that are their own antiparticles. In this sense, 
partiholes are a new instance of Majorana’s 
idea, which is why the corresponding zero 
modes are called Majorana modes.

But where and how would one 
observe such Majorana modes? In most 
superconductors, in which the Cooper pairs 
have orbital angular momentum 0 (s-wave) 
and the electrons obey a Schrödinger-like, 
nonrelativistic equation, zero modes are 
not predicted to occur. However, they are 
predicted17 to occur if the Cooper pairs have 
orbital angular momentum 1 (px + ipy-wave), 
or for s-wave Cooper pairing if the electrons 
in the normal state obey a Dirac-like 
equation18. The former case could occur, 
in effect, in certain quantum Hall states — 
specifically, the so-called Pfaffian or Moore–
Read state at ν = 5/2 filling19 — and possibly 
in some exotic superconductors including 
strontium ruthenate20. The case in which 
the normal-state electrons obey Dirac-like 
beahviour is predicted to be induced at the 
surface of a new class of material called 
topological insulators21 or in graphene22, 
by exploiting the proximity effect to induce 
superconductivity in those materials. Thus, 
the race is on to find such exotic realizations 
of Majorana’s idea in a variety of systems.

Figure 1 | Antimatter matters in the solid state. a, A familiar concept in solid-state physics, holes are 
bubbles of missing electrons in the Fermi sea of the electronic spectrum, behaving like positively charged 
electrons. b, In a superconductor, the properties of electrons (blue) and holes (grey) are drastically 
modified by their interaction with the surrounding sea of Cooper pairs; a hole can attract or bind to a 
Cooper pair, and acquire negative charge. c, More importantly, Cooper pairs cluster around holes and thin 
out around electrons, in such a way that no rigorous distinction between them remains.
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Figure 4 | E�6 �E�8 difference for YPdBi. The insets show the band structures at the marked points along ⇤ and ⇧ symmetry directions of the Brillouin
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Figure 5 | Bandstructure of YPdBi under tetragonal strain (c/a=0.97). a–c, At the critical lattice constant (b) the strain shifts down the heavy-hole band
with parabolic dispersion, leaving the single Dirac cone at the Fermi energy. This effect is especially pronounced along the ⌅ direction, parallel to the strain.
We note that along ⇤ (perpendicular to the strain) the bands at the Fermi energy still have a linear dispersion near the ⇥ point, although on a much smaller
scale. Variation of the lattice constant (by ±4%) around the critical value leads to the trivial state by compression (a) or the topological state by
expansion (c).

band is pushed away from the Fermi level. It should be noticed
that the dispersion at the critical point is linear along all directions
in momentum space around ⇥, although the linear region is very
small along the directions perpendicular to the strain direction.
Consequently, such a transition driven by the change of lattice
constant corresponds to the sign change of the mass term in the
three-dimensional Dirac equation, which is exactly the theory of
the topological phase transition between trivial and topological
insulators. Thus we conclude that the inverted half-Heuslers are
Z2-topological non-trivial.

The proposed materials can be tuned from a trivial to a
topological insulator mainly in two different ways: (1) by variation
of the lattice constant (applying pressure or growing thematerial on
appropriate substrate); and (2) by substitution of elements (varying
their electronegativities or the strength of spin–orbit coupling).
The devices allow for further options to manipulate the electronic
structure, such as to switch the borderline compound from trivial
to topological by applying a gate voltage or by constructing a
quantum-well structure.

After the initial discovery of the QSH systems, the current
research is now focused on the proximity effect between the

TIs and other forms of ordered states, such as magnetism and
superconductivity4. However, the TIs that we known at present
only become magnetic or superconducting when doped with
extrinsic elements such as Mn, Fe and Cu. In contrast, the TIs
based on Heusler compounds that naturally include the f -shell
rare-earth elements intrinsically form a stoichiometric system.
Besides the chemical functions (passing of the three electrons
to the zinc-blende lattice and determining the lattice size), the
additional open f -shell element renders multifunctionality by
providing the coexistence of conventional ordering with the TI
state, which is necessary for the realization of new topological
effects and new extended applications. Here we list several examples
of such multifunctional materials. (1) Bulk magnetism found
in LnPtBi (Ln = Nd,Sm,Gd,Tb,Dy; ref. 13) may realize the
dynamical axion17, which is the spin-wave excitation topologically
coupled with an electromagnetic field. Such an effect provides
a new design of a tunable optical modulator. (2) The heavy-
fermion behaviour in YbPtBi (ref. 14) may realize the recently
proposed topological Kondo insulator28. (3) The superconductivity
in the non-centrosymmetric low-carrier LaPtBi system12; here, the
absence of inversion symmetry is theoretically proposed to support
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examination of the electronic structure near the Fermi level (Fig. 2a
inset) reveals that the orbital-angular-momentum symmetries of
these ternary half-Heuslers are identical to those in either HgTe
or CdTe. In LuPtSb, a pair of concave-up bands and a pair of
concave-down bands are degenerate at the � point. We find that
these fourfold-degenerate states exhibit p-type orbital symmetry
with a total angular momentum of J = 3/2, and, in energy, lie
above a twofold-degenerate s-like pair, representing an inversion
relative to the natural order of s- and p-type-orbital-derived band
structure. Away from the � point, the concave-up bands gain
significant s-like character owing to orbital hybridization. Similar
band ordering is observed for YPtSb if its lattice is slightly expanded.
These results suggest that the electronic ground states of the
LuPtSb and YPtSb pair are very close to a band-inversion critical
point; therefore, minor modifications of these electron systems
can drive the compounds from trivial to non-trivial Z2 phase and
vice versa. Further results show that the same band inversion is
realized in naturally occurring YAuPb. However, in YAuPb the
low-energy electronic properties are dominated by an additional set
of conduction bands that drop below the Fermi level to form bulk

electron pockets near the X point, making the system intrinsically
bulk metallic. As this extra band does not change the inversion
scenario, the bulk of YAuPb is still topologically non-trivial (or
‘three-dimensional topological metal’). YAuPb thus harbours a
state that is very similar to the band topology observed in pure
Sb (ref. 12). As in Sb, it should be possible to reduce the bulk
conductivity of YAuPb by alloying. In fact, alloying Sb with Bi led
to the first realization of a three-dimensional topological insulator
Bi1�xSbx (ref. 11). The added advantage in the half-Heuslers is that
the alloying can be done on any of the Y, Au or Pb atomic sites,
providing a wide range of spin–orbit strength and lattice constant
tunability for the derived insulator. Further tunability is possible
by considering the f-electron-number variation allowed within the
lanthanide (Ln= La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,
Tm, Yb, Lu) series, withmagnetic moments varying from zero in La
up to more than 10µB in Dy3+ or Ho3+, leading to strong magnetic
ground states harboured in the LnPtBi or LnPtSb series.

A full comparison of global band symmetries confirms these
assertions regarding the band inversion. Our calculations (detailed
in the Supplementary Information) show that bands near the Fermi
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FIG. 1. (Color online) Crystal structure of (a) MgAgAs- and (b)
MnCu2Al-type phases.

thermoelectric power was studied from 6 to 300 K, employing
a home-built setup using pure copper as a reference material.

III. RESULTS AND DISCUSSION

The magnetic measurements revealed that HoPdBi,
DyPdBi, GdPdBi, and NdPdBi order antiferromagnetically
at 2, 3.5, 13, and 4 K, respectively, while ErPdBi remains
paramagnetic down to the lowest temperature studied [see
Fig. 2(a)]. In wide temperature ranges, the χ−1(T ) exhibit
linear temperature dependence. They may be well described
by the Curie-Weiss law and the effective magnetic moments
µB being close to those expected for free R3+ ions within
Russell-Saunders coupling scenario, µR3+

eff = g[J (J + 1)]1/2.
This indicates good localization of the magnetic moments
on the rare-earth atoms. Moreover, the obtained values of
the paramagnetic Curie temperature are small and negative,
consistent with the type of magnetic ordering in these systems.
As the only exception, YPdBi, which does not contain 4f
electrons, shows a diamagnetic behavior [see Fig. 2(b)] that
may reflect the formation of a time-reversal-invariant spin-
orbit ground state. It is worth to recall that it is one of the
conditions for realizing a Z2 = −1 topological insulating
state.14

The temperature dependencies of the electrical resistivity
of the RPdBi phases are shown in Fig. 3. In general, the
magnitude and the temperature variations of the resistivity are
characteristic of semimetals or narrow-gap semiconductors.20

In the case of ErPdBi, GdPdBi, NdPdBi, and DyPdBi, the
ρ(T ) exhibits two different regimes. At high temperatures, the
electrical resistivity displays a semiconducting-like character
(dρ/dT < 0), signaling carrier excitations over a small energy
gap Eg near the Fermi level. This behavior is followed at
lower temperatures by a metallic-like dependence of ρ(T )
(dρ/dT > 0). In general, the observed behavior is reminiscent
of those typical for doped semiconductors where, due to
atomic disorder, defects and/or wrong stoichiometry some
donor or acceptor levels are present, leading to metallic-like
ρ(T ). In order to account for this rather complex temperature
behavior a simple model of the electronic band structure in
narrow-gap semiconductors may be used (see Refs. 6,21–23).
Recently, this model has been successfully applied to describe
the temperature dependence of the resistivity in some filled
skutterudites22 as well as in compounds ErPdSb, 6 HoPdSb, 21

and DyPdBi. 21 In this approach, one considers two rectangular

FIG. 2. (Color online) (a) Low temperature dependencies of the
magnetic susceptibility of RPdBi compounds. Arrows mark the
antiferromagnetic phase transition. (b) Temperature dependence of
the magnetic susceptibility of YPdBi. (Inset) Magnetic field variation
of the magnetization in YPdBi taken at 30 and 300 K with increasing
(solid symbols) and decreasing (empty symbols) field.

bands of height N , separated by an energy gap Eg , and the
Fermi level situated just below the gap. In order to describe
the metallic conductivity at low temperatures, the presence
of some temperature-independent amount of carriers n0 is
assumed. Thus, the total number of carriers can be expressed
as

n(T ) = n0 +
√

ne(T )nh(T ), (1)

where the concentrations of electrons ne(T ) and holes nh(T )
are given by

ne(T ) = −NEg + NkBT ln 2
[

1 +
(

Eg

kBT

)]
, (2)

nh(T ) = −NkBT ln 2. (3)

Based on these assumptions and approximations, ρ(T ) can
be defined as

ρ(T ) =
n0ρ0 + ρph(T )

n(T )
. (4)
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FIG. 1. (Color online) The temperature dependence of the re-
sistance of YPtBi is nonmetallic between 0 and 300 K, probably
indicative of a semimetallic band structure. The Hall constant RH

exhibits a similar temperature dependence. Within a one-band model,
the carrier concentration varies from 2 × 1018 cm−3 at 2 K to
2 × 1019 cm−3 at 300 K. The inset highlights the superconducting
transition with critical temperature Tc = 0.77 K, as seen in resistivity
and ac magnetic susceptibility.

at least 14 T. Shubnikov–de Haas oscillations are readily
apparent, and can be observed up to temperatures of at least
10 K. The inset of Fig. 2 shows five such oscillations measured
at 0.1 K, with background subtracted, which have a frequency
of approximately 46 T. Assuming a spherical Fermi surface
for simplicity, this corresponds to a carrier density of 1.7 ×
1018 cm−3, in good agreement with the Hall measurements.
Via a Lifshitz-Kosevich analysis, the temperature dependence
of the amplitude of the oscillations yields an effective mass
of 0.15 bare electron masses, which is light for a hole pocket.
Also of great interest is a node due to beating in the vicinity
of 0.12 T−1, which is indicative of the presence of two
similarly sized spin-orbit split Fermi surfaces. Unfortunately
only one node is discernible in our data, otherwise it would
be possible to determine the frequencies corresponding to
the two Fermi surfaces and estimate the strength of the
spin-orbit coupling.25 It is also tempting to ascribe the linear
magnetoresistance and Hall resistance to Abrikosov’s quantum
magnetoresistance,26 although the carrier density 1018 cm−3

is slightly too high for this model to be applicable over the
entire field range. Alternatively, the linearity may originate
from interband scattering due to the two spin-orbit split Fermi
surfaces.

While the low-temperature properties of YPtBi are consis-
tent with a spin-orbit split one-band description, this breaks
down at higher temperatures. For temperatures above 60 K,
the single-band Hall carrier density increases by an order of
magnitude to 2 × 1019 cm−3 at 300 K. The Hall mobility µ =
RH/ρxx ranges from a respectable value of 3500 cm2 V−1 s−1
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FIG. 2. (Color online) Magnetotransport properties of YPtBi
with magnetic field along the [001] direction. The low-temperature
(3 K) transverse magnetoresistance ρxx and Hall resistance ρxy

exhibit a remarkable linearity up to 14 T. Above 3.5 T, the Hall
response exceeds the magnetoresistance, and in both signals, quantum
oscillations are clearly visible at higher fields. Inset: Shubnikov–de
Haas oscillations at 0.1 K, with the background magnetoresistance
subtracted, have a period of approximately 0.02 T−1 (vertical lines)
and an effective mass of 0.15 me. A node due to beating (arrow) at
0.12 T−1 produces a π phase shift in the oscillations (+/− signs).

below 80 K to 1000 cm2 V−1 s−1 at 300 K. This behavior
implies that most of the reduction in ρ(T ) with increasing
temperature is nominally due to an unusually large increase in
carrier concentration. Strangely, µ(T ) shows a much less dra-
matic temperature dependence than that of another low carrier
density topological metal, namely high-mobility defect-doped
Bi2Se3,5 begging for an alternative explanation. Consistent
with calculated band structures,23,24 a likely scenario is that
the Fermi energy falls near the top of a valence band located
at the # point, but less than 10 meV below the bottom of a
conduction band close by in the Brillouin zone. As a result, the
low-temperature properties of YPtBi look like those of a low
hole density metal, while increasing temperature above 60 K
eventually starts to also populate electronlike carriers, leading
to both an increase in scattering and a rapid decrease in RH due
to partial charge compensation. Our transport measurements
support the accuracy of the band-structure calculations and, as
a consequence, nontrivial topology in YPtBi.

Despite the large low-temperature resistivity and low carrier
density, YPtBi undergoes a superconducting transition at a
critical temperature Tc = 0.77 K. In fact, YPtBi sits at the
extreme of low carrier density superconductors, with even
lower carrier concentration than superconducting SrTiO3−x .27

The zero-field resistive transition, shown in the inset of Fig. 1,
is sharp with a gently rolling onset, while a diamagnetic
response is observed in the ac magnetic susceptibility. The
temperature dependence of the upper critical field Hc2 with
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FIG. 3. (Color online) Superconducting phase transition in
LuPtBi, occurring at Tc = 1.0 K. The transition is observed in both
the resistivity (blue curve, right axis) and the magnetic susceptibility
(red curve, left axis).

where t = T/Tc [Fig. 4(b)]. Using the zero-temperature
relation Hc2 = φ0/2πξ 2

0 , we extract the coherence length ξ0 =
14 nm. Comparing the coherence length with the mean free
path, we find our sample satisfying the clean limit condition
l ≫ ξ0.
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FIG. 4. (Color online) (a) Field dependence of the resistivity in
LuPtBi, at different temperatures. A selected number of isotherms
are shown as indicated. Hc2(T ) is taken as the full recovery of the
normal-state resistivity, as marked by arrows for T = 0.2 K and 0.6 K.
(b) Hc2 as a function of temperature. The dotted line is a fit to the
Ginzburg-Landau expression [Eq. (1)], which yields Hc2(0) = 1.6 T.

IV. DISCUSSION

According to transport experiments, the XPtBi compounds
may be either semiconducting or semimetallic, depending on
the choice of the rare earth element X.6 The former is favored
by the lighter rare earth atoms while the latter is favored by
the heavier ones. Band structure calculations show that in the
absence of spin-orbit interaction, XPtBi is a semiconductor.
Semimetallic properties appear only when the spin-orbit inter-
action is included.25 Our observations of the weak temperature
dependence of resistivity, the small concentration of carriers,
and the large magnetoresistance in LuPtBi indicate that the
normal state is a semimetal, hence spin-orbit interaction must
play a significant role. A large spin-orbit coupling is also
expected from atomic physics considerations since Lu has the
largest atomic number amongst the lanthanides.

LuPtBi is an unconventional superconductor in two re-
spects. First, it is a noncentrosymmetric superconductor, be-
cause its crystal structure lacks inversion symmetry. Secondly,
superconductivity in the bulk of the material emerges from a
band structure which is likely to be topologically nontrivial.
Below, we discuss both aspects in turn.

A. Noncentrosymmetic superconductivity

Superconductivity in a NCS system was first observed in the
heavy-fermion metal CePt3Si.26 Soon after, similar f -electron
systems were discovered such as CeIrSi3 and CeRhSi3, both
superconducting under pressure.27,28 NCS superconductivity
has also been discovered in non-f systems such as Li2Pd3B
and Li2Pt3B.29,30

In the absence of a center of inversion, an asymmetric
crystal field potential creates an electric field E⃗ = −∇$ which
can generate a Rashba spin-orbit interaction (E⃗ × p⃗) · S⃗.
This interaction splits the Fermi surface and introduces a
certain helicity to the electrons on each surface, hence pure
spin-singlet or spin-triplet pairings can no longer be valid
descriptions of the pairing state. Mixed singlet-triplet pairing
is one intriguing possibility.31

We evaluate Hc2 = 1.6 T in LuPtBi from a generalized
Ginzburg-Landau analysis [Fig. 4(a)]. Using the Werthamer-
Helfand-Hohenberg formula in the clean limit Horb =
0.72Tc [−dHc2/dT ]Tc

, we evaluate the orbital limiting field
Horb = 1.24 T. Using HP = %/

√
2µB and % = 1.76kBTc, we

evaluate the Pauli limiting field HP = 1.85 T. Since Horb <
Hc2 < HP, superconductivity in LuPtBi is Pauli limited. The
Maki parameter α =

√
2Horb/HP is less than one hence the

FFLO state is not favorable.32

Table II summarizes Tc, Hc2, Horb, and HP for a number
of NCS superconductors, including the heavy fermion sys-
tems which contain free f electrons and the ones with no
f electrons. Hc2 of the heavy-fermion NCS superconductors
clearly exceeds the Pauli limiting field HP, suggestive of
triplet pairing. In the non-f NCS superconductors Hc2 < HP,
hence spin triplet pairing is not an obvious possibility. A
recent careful study of YPtBi shows that the temperature
dependence of Hc2 at different pressures collapses onto a single
universal curve different from the standard curve expected
from spin-singlet superconductors, hence triplet pairing is not
entirely ruled out.16 Our data shows that similar to YPtBi and
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R TN (K) ⇥W (K) µe↵ (µB) µfree (µB)
Sm 3.4 -258 1.9 0.85
Gd 13.2 -49.6 7.66 7.94
Tb 5.1 -28.9 9.79 9.72
Dy 2.7 -14.3 10.58 10.65
Ho 1.9 -9.4 10.6 10.6
Er 1.0 -4.8 9.18 9.58
Tm <0.4 -1.7 7.32 7.56

TABLE S1: Néel temperature TN obtained from the heat capacity and magnetization, Weiss temperature ⇥W , and the e↵ective
moments µe↵ for RPdBi obtained from a fit to the Curie-Weiss expression. The obtained e↵ective moments are close to the
free ion moments µfree except for Sm.
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FIG. S1: X ray di↵raction patterns for RPdBi with Cu K↵ radiation. Cross symbols are observed data, and lines are
theoretical calculations. Upper markers and lower makers correspond to reflections for RPdBi and for elemental Bi. For Sm,
Gd, Dy, and Tb, we used two di↵erent Bi with R3̄m (middle markers) and Fm3̄m (bottom markers) for the refinements.
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FIG. 2: Physical properties of RPdBi single crystals, focusing on evolution of magnetic order with rare earth species R =
Sm, Gd, Tb, Dy, Ho, Er, and Tm. a Magnetic susceptibility M/H of RPdBi members with magnetic R species, showing
Curie-Weiss behavior and clear, abrupt decreases in M/H denoting antiferromagnetic transitions. Inset presents data for non-
magnetic YPdBi and LuPdBi, exhibiting diamagnetic behavior. b Low-temperature zoom of M/H for Tb, Dy, Ho, Er, and Tm
and c for Gd and Sm, with arrows indicating Néel temperatures. (Note: 1 emu/mol Oe=4⇡⇥10�6 m3/mol.) d Magnetization
M at 2 K for magnetic rare earth members R = Sm, Gd, Tb, Dy, Ho, Er, and Tm. e, Electrical resistivity of all members
in the temperature range 2 K – 300 K, showing non-monotonic temperature dependence in all species. The inset presents the
charge carrier density nH obtained from single-band analysis of Hall e↵ect measurements performed at 1.8 K (see text). The
sign of all carriers is positive (see supplementary).
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FIG. 2: Physical properties of RPdBi single crystals, focusing on evolution of magnetic order with rare earth species R =
Sm, Gd, Tb, Dy, Ho, Er, and Tm. a Magnetic susceptibility M/H of RPdBi members with magnetic R species, showing
Curie-Weiss behavior and clear, abrupt decreases in M/H denoting antiferromagnetic transitions. Inset presents data for non-
magnetic YPdBi and LuPdBi, exhibiting diamagnetic behavior. b Low-temperature zoom of M/H for Tb, Dy, Ho, Er, and Tm
and c for Gd and Sm, with arrows indicating Néel temperatures. (Note: 1 emu/mol Oe=4⇡⇥10�6 m3/mol.) d Magnetization
M at 2 K for magnetic rare earth members R = Sm, Gd, Tb, Dy, Ho, Er, and Tm. e, Electrical resistivity of all members
in the temperature range 2 K – 300 K, showing non-monotonic temperature dependence in all species. The inset presents the
charge carrier density nH obtained from single-band analysis of Hall e↵ect measurements performed at 1.8 K (see text). The
sign of all carriers is positive (see supplementary).
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FIG. 1. (Color online) The Gd atoms are shown in black (blue),
the Bi as gray (gray), and the Pt as white (yellow). The spins on
the Gd atoms are oriented in ferromagnetic planes which are stacked
antiferromagnetically along the magnetic propagation vector ( 1

2
1
2

1
2 ).

shows a magnetic structure very similar to the one proposed
in [7], with the magnetic moments arranged in ferromagnetic
sheets, perpendicular to the [111] space diagonal. This makes
GdBiPt a strong candidate for this new state of matter.

GdBiPt crystallizes in the cubic half-Heusler crystal struc-
ture with the space group F 4̄3m [13]. Members of the
REBiPt family show many interesting properties such as
superconductivity, antiferromagnetic order, and super-heavy-
fermion behavior. Band structure calculations and angle-
resolved photoemission spectroscopy experiments on Lu, Nd,
and GdBiPt [14] indicate the presence of metallic surface
states that differ strongly from the band structure in the bulk.
However, the authors found that within their resolution an
even number of bands cross the Fermi level at the surface,
making these states sensitive to disorder unlike in strong
topological insulators where an odd number of crossings is
expected, protecting surface states from being backscattered
by a nonmagnetic impurity. An x-ray resonant magnetic
scattering (XRMS) study on GdBiPt indicated a doubling
of the unit cell along its [111] space diagonal, however,
the authors were unable to establish the exact direction of
the magnetic moments [15], information that is essential in
determining whether GdBiPt could be an AFTI.

The half-Heusler structure consists of four interpenetrating
fcc lattices shifted by [ 1

4 , 1
4 , 1

4 ], three of them occupied by a
different element while the fourth forms an ordered vacancy.
We carried out combined refinement of our x-ray and neutron
scattering data, which yields the lowest χ2, if the atoms in
GdBiPt take the same positions as reported for YbBiPt [16]
and CeBiPt [17]—platinum located on the [0,0,0] site (4a),
Gd3+ on the [ 1

4 , 1
4 , 1

4 ] (4c), and Bi on the [ 3
4 , 3

4 , 3
4 ] position

(4d) (see Table I of [18]). These atomic positions are in
agreement with the ones that have been previously reported
by Kreyssig et al. [15]. In addition, we also carried out
a single crystal x-ray diffraction experiment. Due to the
noncentrosymmetric nature of the F43m space group, we
also tested an inverted structure (racemic twin) with Pt on
the 4a, Bi on the 4c, and Gd on the 4d site in order to see if
such a structure could account for the observed intensities. In
a noncentrosymmetric structure, anomalous x-ray scattering
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FIG. 2. The solid points show the resistivity ρ(T ) of GdBiPt at
zero magnetic field for a temperature range of 10–300 K. The open
circles show the temperature evolution of the Hall coefficient from
1.8 to 300 K, revealing a kink well above the 9 K Néel temperature
(shown in more detail in the inset).

leads to different intensities for so-called Friedel pairs, such
as (hkl) and (h̄k̄l̄). The refinement confirmed the original
structure, resulting in R1 = 0.0241, where R1 is the difference
between the experimental observations and the ideal calcluated
values, and a Flack parameter, which is the absolute structure
factor, of −0.13(2) for the current structure in contrast to
R1 = 0.0806 and Flack parameter of 1.2(1) for the inverted
structure (please note that a Flack parameter is 0 for the correct
structure and 1 for the inverted structure).

GdBiPt has a low carrier density (∼3 × 1018 cm−3/C).
Figure 2 shows that there is a gradual increase in the Hall
coefficient as the temperature is reduced, with a clear kink near
25 K. The Hall coefficient was measured using a Quantum
Design PPMS, which was also used for the specific heat
measurements. CeBiPt also shows such a kink followed by
a stronger increase of RH. In CeBiPt this kink appears at the
transition temperature TN and was ascribed to the development
of a superzone gap in the ordered state and consequently a
reduction of the number of charge carriers [19]. In GdBiPt a
similar kink seems to be present: however, it occurs around
25 K which is above TN ∼ 9 K.

For a temperature range of 50–300 K, the magnetic
susceptibility χ of Gd3+ shows a Curie-Weiss behavior
with a Curie-Weiss temperature θW of −31.5(3) K, and
an effective magnetic moment µeff of 7.97(4)µB consistent
with the 7.94µB expected for Gd3+. The data were taken in
an applied field of 0.05 T using a Quantum Design VSM
squid magnetometer. The magnetic entropy Smag shown as
the dashed line reaches 0.9R ln(8) at TN indicative of the
absence of frustration in contrast to the predictions of [20].
Here Smag was calculated by integrating the magnetic specific
heat C − Cph − Cel after subtracting the phonon Cph and
electronic contributions Cel, respectively. Figure 3 also shows
that d

dT
(χT ) exhibits a peak at 8.5 K which confirms the

antiferromagnetic ordering with a Néel temperature TN of
8.5 K. In fact, all three measurements—specific heat Cp(T ),
electrical resistivity d

dT
ρ(T ) (not shown), as well as the
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FIG. 3: Characterization of antiferromagnetic order with elastic neutron di↵raction. a, Low temperature magnetic di↵raction
pattern of DyPdBi obtained by subtracting 18 K data from 1.5 K data. Labels indicate the series of half-integer antiferro-
magnetic peaks. b, antiferromagnetic order parameter of single-crystal TbPdBi obtained from the intensity of the (0.5,0.5,0.5)
magnetic Bragg peak. Solid curve is a mean-field fit to the data, and the inset presents a schematic of the antiferromagnetic
spin structure.
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Semi-metallic behavior
n ~ 1019 cm-3

Consistent with band calculations

ing hydrostatic expansion to change the band order. For
example, LaPdBi has normal band order in its native state
!Fig. 5"a#$, a 7% change in the lattice constant converts the
trivial topological phase into a nontrivial topological phase
!Fig. 5"b#$. The effect of volume expansion is that the
effective positive charge of the Pd core is increased due to
the delocalization of its d orbit. This causes the Pd s orbit
to be more attracted by the Pd core, and consequently, the
!6 state "mainly from atom Pd s orbit# jumps below the !8
state. This formation of band inversion is very similar to
HgTe.34 Conversely, the hydrostatic compression leads to
opposite results. For example, YAuPb has inverted band
order in its native state !Fig. 5"c#$, a −5% change in

lattice constant converts the nontrivial topological phase
into a trivial topological phase !Fig. 5"d#$. We have
calculated other small band-gap compounds under
hydrostatic strain all of the results indicate that the hydro-
static expansion leads to a topological nontrivial phase,
whereas the hydrostatic compression leads to a topological
trivial phase. Again, there are different effects on the band
order under the same hydrostatic strain when using different
exchange-correlation potentials. For example, when one
stretches lattice constant to a=a0+3%a0, LDA calculation
will yield an inverted band structure !Fig. 4"g#$ while it
still has a normal band order by MBJLDA calculation
!Fig. 4"h#$.
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FIG. 4. "Color online# LDA and MBJLDA band structure of half-Heusler compounds LaPtBi "a# and "b#, YPdBi "c# and "d#, YPtBi"e# and
"f#, and LaPdBi "g# and "h#. The !6, !7, and !8 state are denoted by red, black, and blue color, respectively. The size of dots is proportional
to the probability of s-orbit projection.
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FIG. 5. "Color online# Band structures of LaPdBi and YAuPb by MBJLDA. "a# without and "b# with a 7% hydrostatic expansion of
LaPdBi, "c# without and "d# with a 5% hydrostatic compression of YAuPb. The !6, !7, and !8 state are denoted by red, black, and blue color,
respectively. The application of a hydrostatic expansion in "b# causes the !6 state to jump below the !8 state, and leads to a nontrivial
topological phase. In contrast, the application of a hydrostatic compression in "d# causes the !6 state to jump above the !8 state, and leads
to a trivial topological phase.
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FIG. 2: Physical properties of RPdBi single crystals, focusing on evolution of magnetic order with rare earth species R =
Sm, Gd, Tb, Dy, Ho, Er, and Tm. a Magnetic susceptibility M/H of RPdBi members with magnetic R species, showing
Curie-Weiss behavior and clear, abrupt decreases in M/H denoting antiferromagnetic transitions. Inset presents data for non-
magnetic YPdBi and LuPdBi, exhibiting diamagnetic behavior. b Low-temperature zoom of M/H for Tb, Dy, Ho, Er, and Tm
and c for Gd and Sm, with arrows indicating Néel temperatures. (Note: 1 emu/mol Oe=4⇡⇥10�6 m3/mol.) d Magnetization
M at 2 K for magnetic rare earth members R = Sm, Gd, Tb, Dy, Ho, Er, and Tm. e, Electrical resistivity of all members
in the temperature range 2 K – 300 K, showing non-monotonic temperature dependence in all species. The inset presents the
charge carrier density nH obtained from single-band analysis of Hall e↵ect measurements performed at 1.8 K (see text). The
sign of all carriers is positive (see supplementary).
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Semi-metallic behavior
n ~ 1019 cm-3

Consistent with band calculations

ing hydrostatic expansion to change the band order. For
example, LaPdBi has normal band order in its native state
!Fig. 5"a#$, a 7% change in the lattice constant converts the
trivial topological phase into a nontrivial topological phase
!Fig. 5"b#$. The effect of volume expansion is that the
effective positive charge of the Pd core is increased due to
the delocalization of its d orbit. This causes the Pd s orbit
to be more attracted by the Pd core, and consequently, the
!6 state "mainly from atom Pd s orbit# jumps below the !8
state. This formation of band inversion is very similar to
HgTe.34 Conversely, the hydrostatic compression leads to
opposite results. For example, YAuPb has inverted band
order in its native state !Fig. 5"c#$, a −5% change in

lattice constant converts the nontrivial topological phase
into a trivial topological phase !Fig. 5"d#$. We have
calculated other small band-gap compounds under
hydrostatic strain all of the results indicate that the hydro-
static expansion leads to a topological nontrivial phase,
whereas the hydrostatic compression leads to a topological
trivial phase. Again, there are different effects on the band
order under the same hydrostatic strain when using different
exchange-correlation potentials. For example, when one
stretches lattice constant to a=a0+3%a0, LDA calculation
will yield an inverted band structure !Fig. 4"g#$ while it
still has a normal band order by MBJLDA calculation
!Fig. 4"h#$.
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FIG. 1. (Color online) Surface Fermi maps of half-Heusler compounds RPtBi (R = Lu,Dy,Gd). (a) C1b crystal structure of RPtBi. The
crystallographic axes are rotated so that the (111) direction points along z. The red parallelogram marks the Bi(111) cleaving plane. (b) The
surface and bulk Brillouin zone for the rotated crystal structure in (a). Here kz corresponds to the (111) direction of the fcc Brillouin zone.
(c)–(e) Surface Fermi maps of RPtBi. All data are taken with 48 eV photons at T = 15 K. Yellow lines denote the surface Brillouin zone.

The energy resolution was set at ∼15 meV. All samples were
cleaved in situ, yielding clean (111) surfaces in which atoms
are arranged in a hexagonal lattice. High-symmetry points for
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FIG. 2. (Color online) Surface electronic structure of GdPtBi:
Comparison between ARPES data and calculational result. (a)
Fermi map of GdPtBi observed by ARPES, same as in Fig. 1(e).
(b) Calculational surface Fermi map of GdPtBi at the Bi(111) cleaving
plane. See text for details. (c) ARPES band structure along the contour
!̄-M̄-K̄-!̄. Inset of (c) shows enhanced ARPES intensity near M̄ and
K̄ for better visibility of the bands. (d) Calculational band structure
with respect to (c). Sizes of hollow circles represent the contribution of
surface Pt atoms. (e),(f) Expanded figures for (b) and (d), respectively,
showing six Fermi crossings. Panel (e) is rotated by 30◦ with respect
to (b).

the surface Brillouin zone are defined as !̄(0,0), K̄(k0,0), and
M̄(0,k0

√
3/2) with unit momentum k0 =

√
6π/a, where a

is the lattice constant for each type of crystal. We emphasize
here that no stress or pulling force is felt by the samples, which
ensures that the measured data reveal the intrinsic electronic
structure of the single crystals.

In the band structure and Fermi surface calculation for
both the bulk and the surface, we have used a full-potential
linearized augmented plane wave (FPLAPW) method19 with
a local density functional.20 The scalar relativistic method
was employed and spin-orbit coupling was included by a
second-variational procedure. The structural data were taken
from a reported experimental result.21 For the bulk band
calculation of cubic GdPtBi, we used 1240 k points in the
irreducible fcc Brillouin zone and set RMT × kmax = 9.0,
where RMT is the smallest muffin-tin radius and kmax is the
plane-wave cutoff. For the surface band calculation, since we
are interested in the (111) surface, we generated a hexagonal
cell that has the z axis pointing along the [111] direction of
the cubic cell. After that, we constructed supercells with three
layers and 21.87 a.u. vacuum and used these supercells to
calculate the band structures. Although we calculated band
structures of all six possible surface endings (Gd-Bi-Pt-bulk,
Gd-Pt-Bi-bulk, Bi-Gd-Pt-bulk, Bi-Pt-Gd-bulk, Pt-Gd-Bi-bulk,
and Pt-Bi-Gd-bulk), in this paper we present just the Bi-Pt-
Gd-bulk results, which show good agreement with experiment
[Figs. 2(b) and 2(d)–2(f)]. To obtain the self-consistent charge
density, we chose 48 k points in the irreducible Brillouin
zone, and set RMT × kmax to 7.5. We used muffin-tin radii
of 2.5, 2.4, and 2.4 a.u. for Gd, Bi, and Pt, respectively.
For the nonmagnetic calculation, the seven 4f electrons of
Gd atoms were treated as core electrons with no net spin
polarization. The atoms near the surface (Bi, Pt, and Gd) were
relaxed along the z direction until the forces exerted on the
atoms were less than 2.0 mRy/a.u. (1 Ry ≃ 2.18 × 10−18 J =
13.62 eV). As an example, in the Bi-Pt-Gd-bulk structure,
the surface Bi, Pt, and Gd atoms’ z internal coordinates were
relaxed to 0.1199, 0.1024, and 0.0829 from 0.1250, 0.1042,
and 0.0833, respectively. With this optimized structure, we
obtained self-consistency with 0.01 mRy/cell total energy
convergence. After that, we calculated the band structure and
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Surface Fermi surface in RPtBi

not inconsistent with TI properties
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FIG. 4: Superconducting state properties of RPdBi single crystals. a, Resistivity of RPdBi at temperatures below 2 K,
showing superconducting transitions for each compound. b, Temperature dependence of upper critical field Hc2 obtained
from the resistive transition for YPdBi, LuPdBi and DyPdBi. The inset shows the normalized upper critical field h⇤ =
Hc2/TcdHc2/dT |T=Tc as a function of normalized temperature t = T/Tc for YPdBi, with dashed line indicating the expectation
for a polar p-wave state. c, AC susceptibility of single-crystal samples of RPdBi. The magnitude of the screening below the
superconducting transition is comparable to a test sample of superconducting aluminum, confirming bulk diamagnetic screening
(see text). d, heat capacity C/T as a function of T 2 for LuPdBi. Solid line is a fit to the data using C/T = �+�T 2, where �T
is the electronic and �T 3 is the phonon contribution to the specific heat. Inset: enlarged view of the C/T vs T 2 near Tc ⇠ 1.5
K.

Large but non-saturating 
screening



Superconductivity

Yasuyuki NakajimaD43.00015 Yasuyuki Nakajima

9

c

a b

d

FIG. 4: Superconducting state properties of RPdBi single crystals. a, Resistivity of RPdBi at temperatures below 2 K,
showing superconducting transitions for each compound. b, Temperature dependence of upper critical field Hc2 obtained
from the resistive transition for YPdBi, LuPdBi and DyPdBi. The inset shows the normalized upper critical field h⇤ =
Hc2/TcdHc2/dT |T=Tc as a function of normalized temperature t = T/Tc for YPdBi, with dashed line indicating the expectation
for a polar p-wave state. c, AC susceptibility of single-crystal samples of RPdBi. The magnitude of the screening below the
superconducting transition is comparable to a test sample of superconducting aluminum, confirming bulk diamagnetic screening
(see text). d, heat capacity C/T as a function of T 2 for LuPdBi. Solid line is a fit to the data using C/T = �+�T 2, where �T
is the electronic and �T 3 is the phonon contribution to the specific heat. Inset: enlarged view of the C/T vs T 2 near Tc ⇠ 1.5
K.
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of the diamagnetic screening signal which is reached for Bac ¼
0:0001 mT. This points to a superconducting volume fraction
of 67%.

The ac-susceptibility signal measured as a function of Bac
provides a very sensitive way to probe Bc1 [24]. Notably, the
imaginary part of the susceptibility, χ″, which is related to losses
and hysteresis, is an excellent indicator of the first flux penetration
in the sample. If there is a perfect Meissner state up to Bc1 then
χ″ðTÞ ¼ 0 for BacrBc1 and χ″ðTÞ ¼ βðBac$Bc1Þ=Bac for Bac4Bc1.
Here β is a parameter that depends on the sample geometry and
is related to screening currents according to the critical state
model [25]. In Fig. 3 we report χ″ as a function of the internal field
Bint. At the lowest temperature, T¼0.17 K, the clear kink observed
near 0.0076 mT locates Bc1. Upon increasing the temperature the
kink becomes more and more rounded. Bc1ðTÞ determined in this
way is traced in Fig. 4. In the normal state, e.g. at T¼0.80 K, χ″ðTÞ is
essentially flat. We remark that in the Meissner state χ″ðBintÞ is not
equal to 0, but shows a weak quasi-linear increase. The origin of
this behaviour is not clear. Possible explanations are sharp sample
edges where flux could penetrate more easily, and the presence of
an impurity phase with a very small critical field (o0:001 mT).
In the limit T-0;Bc1 ¼ 0:0078 mT. In Fig. 4 we also compare the
Bc1-data with the standard BCS quadratic temperature variation
(see caption Fig. 4). A clear departure is found at the lowest
temperatures. Alternatively, Bc1 can be deduced from the
dc-magnetization measured as a function of the applied field.

MðBapplÞ-data taken at T¼0.17 K are shown in the inset of Fig. 4. Bc1
determined in this way amounts to 0.0083 mT, in good agreement
with the method described above.

Finally, we present in Fig. 5 dc-magnetization measurements
that provide solid evidence for bulk superconductivity. After
cooling in zero field, a field of 0:1 mT is applied in the super-
conducting state. This gives rise to the diamagnetic screening
signal. Upon heating the sample to above Tc, the diamagnetic
signal vanishes. On subsequent cooling, flux expulsion is clearly
observed, which corresponds to a Meissner fraction of 0.4 vol%.
Note that this fraction is very small, because the applied field is
much larger than Bc1 and flux pinning is strong (see also Fig. 2).

5. Muon spin rotation and relaxation

Muon spin rotation and relaxation experiments (μSR) were
carried out at the πM3 beam line at the Paul Scherrer Institute. The
motivation for the experiments was two-fold: (i) to investigate the
appearance of a spontaneous magnetic signal due to the breaking
of time reversal symmetry associated with an odd parity compo-
nent of the superconducting order parameter, and (ii) to deter-
mine the London penetration depth, λ, in the superconducting
state. Measurements were made in the Low Temperature Facility
(LTF) in the temperature range T ¼ 0:02$1:8 K in zero field (ZF)
and weak transverse fields (TF). The ‘polycrystalline’ sample

Fig. 2. (Colour online) Ac susceptibility as a function of temperature of YPtBi for
different driving fields Bac as indicated. Lower frame: χ0; upper frame: χ″.

Fig. 3. (Colour online) χ″ as a function of the internal field Bint at temperatures
as indicated. Bint is obtained by correcting for demagnetization effects: Bint ¼
Bacð1$Nχ 0Þ. The kink locates the lower critical field Bc1 as indicated by the arrow for
T¼0.17 K.

Fig. 4. (Colour online) The lower critical field Bc1 as a function of temperature. The
solid line represents a quadratic dependence Bc1ðTÞ ¼ Bc1ð0Þð1$ðT=TcÞ2Þ with
Bc1ð0Þ ¼ 0:0087 mT and Tc ¼ 0:77 K. Inset: Dc-magnetization versus applied field
at T¼0.17 K. The black arrow indicates where MðBapplÞ deviates from linear
behaviour (black straight line) and flux penetrates the sample.

Fig. 5. (Colour online) DC-susceptibility versus temperature in an applied field of
0.1 mT. After cooling in B¼0 (ZFC), a magnetic field of 0.1 mT is applied. Next the
sample is heated to above Tc and subsequently cooled in 0.1 mT (FC) to demonstrate
flux expulsion.
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FIG. 4: Superconducting state properties of RPdBi single crystals. a, Resistivity of RPdBi at temperatures below 2 K,
showing superconducting transitions for each compound. b, Temperature dependence of upper critical field Hc2 obtained
from the resistive transition for YPdBi, LuPdBi and DyPdBi. The inset shows the normalized upper critical field h⇤ =
Hc2/TcdHc2/dT |T=Tc as a function of normalized temperature t = T/Tc for YPdBi, with dashed line indicating the expectation
for a polar p-wave state. c, AC susceptibility of single-crystal samples of RPdBi. The magnitude of the screening below the
superconducting transition is comparable to a test sample of superconducting aluminum, confirming bulk diamagnetic screening
(see text). d, heat capacity C/T as a function of T 2 for LuPdBi. Solid line is a fit to the data using C/T = �+�T 2, where �T
is the electronic and �T 3 is the phonon contribution to the specific heat. Inset: enlarged view of the C/T vs T 2 near Tc ⇠ 1.5
K.
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CePt3Si is a novel heavy fermion superconductor, crystallizing in the CePt3B structure as a
tetragonally distorted low symmetry variant of the AuCu3 structure type. CePt3Si exhibits antiferro-
magnetic order at TN ! 2:2 K and enters into a heavy fermion superconducting state at Tc ! 0:75 K.
Large values of H0

c2 ! "8:5 T=K and Hc2#0$ ! 5 T refer to heavy quasiparticles forming Cooper pairs.
Hitherto, CePt3Si is the first heavy fermion superconductor without a center of symmetry.

DOI: 10.1103/PhysRevLett.92.027003 PACS numbers: 74.70.Tx, 71.27.+a, 75.30.Mb

Correlation effects among electrons belong to the key
causes for the occurrence of extraordinary properties of
solids at low temperatures. The most exciting phenome-
non in this respect is superconductivity (SC). Both high
temperature and heavy fermion superconductors attracted
great interest throughout the past two decades. The most
interesting aspects to solve are the specific mechanisms
of pairing and the symmetry of the superconducting
condensate [1]. While in conventional superconductors
the binding of electrons into Cooper pairs is normally
mediated by phonons, the origin of pairing in some heavy
fermion superconductors is believed to be connected with
spin fluctuations, giving rise to unconventional supercon-
ducting phases (see, e.g., Ref. [2]).

Pronounced electron correlations are generally found
in systems exhibiting the Kondo effect and thus Ce, Yb,
and U based compounds are certainly candidates for the
occurrence of superconductivity where renormalized qua-
siparticles form the Cooper pairs. While heavy fermion
superconductors are yet missing in Yb based compounds,
such phases were identified for both Ce and U systems.

Ce-based heavy fermion superconductors, however, are
still few in numbers. Prototypic CeCu2Si2 exhibits super-
conductivity below Tc % 0:7 K [3]. The application of
pressure in the 20 to 30 kbar range to members of this
structure family such as CeCu2Ge2 [4], CePd2Si2 [5], and
CeRh2Si2 [6] is sufficient to trigger superconductivity as
well. Very recently, a new class of compounds, CeMIn5,
was added where at ambient conditions heavy fermion
superconductivity occurs for M % Co and Ir at Tc % 2:3
and 0.4 K, respectively [7,8]. Again, pressure initiates
superconductivity, e.g., in CeRhIn5 below Tmax

c % 2:1 K
[9]. The crystal structure of latter compounds can be
considered quasi-two-dimensional variants of CeIn3
(AuCu3-type). Cubic CeIn3 becomes superconducting at
&25 kbar [2].

The aim of the present Letter is to report on the dis-
covery of both, heavy fermion superconductivity and
long range magnetic order in the compound CePt3Si, to
evaluate parameters characterizing the superconducting
state and to discuss possible pairing scenarios.
CePt3Si was prepared by argon arc melting and subse-

quent heat treatment under high vacuum at 870 'C for
three weeks. Crystal structure was determined from
kappa-CCD single crystal x-ray data and found to be
tetragonal, space group P4mm (No. 99), isotypic with the
ternary boride CePt3B [10,11] (see Fig. 1). Crys-
tallographic data (standardized) are a % 0:4072#1$ nm
and c % 0:5442#1$ nm; Ce in site 1(b) at 0:5; 0:5; 0:1468;
Pt(1) in 2(c) at 0:5; 0; 0:6504, Pt(2) in 1(a) at 0; 0; 0 (fixed),
and Si in site 1(a) at 0; 0; 0:4118.
CePt3Si derives from hypothetical CePt3 with cubic

AuCu3 structure by filling the void with Si, which in

FIG. 1 (color online). Crystal structure of CePt3Si. The bonds
indicate the pyramidal coordination (Pt5)Si around the Si atom.
Origin shifted by (0:5; 0:5; 0:8532) for convenient comparison
with the parent AuCu3 structure.

P H Y S I C A L R E V I E W L E T T E R S week ending
16 JANUARY 2004VOLUME 92, NUMBER 2

027003-1 0031-9007=04=92(2)=027003(4)$22.50 © 2004 The American Physical Society 027003-1

c.f. heavy fermion SC CePt3Si
E. Bauer et al. PRL (2004)

quasiparticle behavior, the phonon and antiferromagnetic
magnon contributions must be extracted reliably. The mag-
non contribution is negligibly small at T < 1 K, since the
spin wave gap in CePt3Si is reported to be larger than 15 K
[16]. The simplest way to estimate the phonon conductivity
is to separate the phonon !ph and electron !e contributions
in the normal state at a temperature sufficiently low that
!ph has reached its well defined asymptotic T3-dependent
value given by !ph ! 1

3"hvsiT3‘ph, where " is the phonon
specific heat coefficient, hvsi is the mean acoustic phonon
velocity, and ‘ph is the phonon mean free path. In Fig. 1(b),
!=T is plotted as a function of T2. The solid line is a linear
fit in the normal state, !=T ! a" bT2 with a !
0:65 W=K2 m and b ! 1:4 W=K4 m. Using hvsi#
3000 m=s and " ’ 10:8 J=K4 m3 yields ‘ph # 200 #m,
which is comparable to the sample size. Therefore the T3

term in ! mainly originates from phonons. Note that the
Lorentz number L ! !$=T ’ 1:02L0 at T ! 0 in the nor-
mal state is very close to the Sommerfeld value L0 !
2:44$ 10%8 !W=K. The dashed lines in Figs. 1 and 2
show !ph. Based on these estimations, we can conclude

that heat transport well below Tc is dominated by the
electronic contribution: ! & !e.

We first discuss the thermal transport in zero field. As
shown in Fig. 1(a), the T dependence of !=T in CePt3Si is
markedly different from that in a fully gapped s-wave
superconductor, in which !=T exhibits exponential behav-
ior [18]. As shown by the straight line in Fig. 1(a), !=T is
well fitted to the data by !=T ! A" BT in a wide T range
above 40 mK.

The presence of a residual term at T ! 0 in !=T is
clearly resolved. The residual term indicates the existence
of a residual normal fluid, which is expected for an uncon-
ventional superconductor with nodes in the energy gap.
This residual normal fluid is a consequence of impurity
scattering, even for low concentrations of nonmagnetic
impurities [19,20]. It has been shown that, for an order
parameter with line nodes, the quasiparticle thermal con-
ductivity has components that are universal in the limit
T ! 0 and of the form

!e

T
! !00

T

!

1"O
"

T2

%2
0

#$

(1)

in the range kBT < %0, where %0 is the impurity bandwidth
[19–21]. !00=T is the residual term and the second T2 term
is a finite T correction, which strongly depends on the
impurity scattering phase shift. We did not observe the
T2 term in !=T in our T range. This may be due to the
fact that %0 is comparable to or less than our lowest
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FIG. 2. (a) H dependence of the T-linear coefficient of !=T !
A" BT. (b) H dependence of !, normalized by the normal state
value !n, as a function of H=Hc2 at T ! 100 mK and at T ! 0.
We used Hc2 ! 3:6 T. The dashed line represents !=!n !
0:15" 0:54H0:49. The solid line is the result of fitting obtained
by using Eq. (3). For comparison, data for the typical s-wave
superconductor Nb at 2 K is shown (!). For details, see the text.
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FIG. 1. (a) Main panel: a-axis thermal conductivity of CePt3Si
for the H k b axis, plotted as !=T vs T (", 0 T; ', 0.2 T; #,
0.5 T; 4, 1 T; $, 1.5 T; %, 2 T; &, 3 T; 5, 4 T). The solid line is
a linear fit in zero field: !=T ! A" BT. The dashed line is the
contribution of phonons !ph. The dash-dotted line is the thermal
conductivity in s-wave superconductors. Inset: T dependence of
a-axis resistivity for the H k b axis. (b) The same data at low
temperatures plotted as !=T vs T2. The solid line is a linear fit in
the normal state: !=T ! a" bT2. The dashed line represents
!ph. Inset: T dependence of !=T in zero field.
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FIG. 1. (Color online) (a) Representative Cu Kα XRD charts
(circles) with Rietveld analysis (solid curves). The error of the
Rietveld fitting (RF) (Ref. 24) is about 3%. (b) The distorted B(Pd,Pt)6

octahedral units. α is the angle between the two connected octahedra,
and lmax (lmin) is the longest (shortest) M-M (M = Pd,Pt) bond length.
(c) Tc vs Pt content x.

(Tc = 2.17 K),16 were made and measured. The previously
reported x = 1 sample (Tc = 2.68 K)4 is referred to as x = 1
#A. All fresh samples were confirmed to be single phase by
powder x-ray diffraction (XRD) [Fig. 1(a)]. Figure 1(b) depicts
the B(Pd,Pt)6 octahedral units whose bond length and angle α
is obtained from Rietveld analysis.24 An inductively coupled
plasma (ICP) analysis was applied to check the Li:Pd(Pt):B
ratio of the resultant samples.25 Tc for each sample at H = 0
and a finite H was determined by measuring the inductance of
the in situ NMR coil. The Tc showed a smooth decrease with
increasing x [Fig. 1(c)].

NMR measurements were conducted at H = 0.26 T in
order to minimize the reduction of Tc by H . The NMR spectra
were obtained by a fast Fourier transform of the spin echo
taken at the fixed H . The spin-lattice relaxation rate 1/T1 was
measured for 11B, 195Pt, and 7Li, and determined by a good
fit of the recovery of the nuclear magnetization to a single
exponential function. For the alloyed samples, a 195Pt Knight
shift was measured, since it is much larger than that of 11B or
7Li and provides a higher accuracy for broadened spectra due
to alloying. Measurements below 1.4 K were carried out with
a 3He-4He dilution refrigerator.

The electronic structure calculations were performed by
using the full-potential augmented plane-wave plus local
orbital method and the Perdew-Burke-Ernzerhof parametriza-
tion of the generalized gradient approximation (GGA-PBE)
exchange-correlation function26 as implemented in the WIEN2K
code.27 The spin-orbital interaction was included by using
a second variational procedure. The muffin-tin radii were
set to RMT = 1.88 bohrs for B, RMT = 2.27 bohrs for Li,
and RMT = 2.12 bohrs for Pd and Pt. The plane-wave cutoff
(Kmax) was determined by RminKmax = 7.0, where Rmin is the
minimal RMT.
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FIG. 2. (Color online) (a) The T dependence of 11(1/T1). The
straight lines above Tc indicate the 1/T1 ∝ T relation. (b) The T

dependence of 195(1/T1) for x = 0.5, 0.84, 0.9, and 1. For both
(a) and (b), data were offset vertically for clarity by multiplying or
dividing by a number shown in the figure (Ref. 25). Data for x = 1 #A
(H = 0.4 T) were taken from Ref. 4. The arrows indicate Tc under a
magnetic field. The straight lines below Tc for x = 0.9 and 1 indicate
the 1/T1 ∝ T 3 relation.

Figure 2 shows the temperature (T ) dependence of 11B-
NMR 1/T1 for various x. For x ! 0.8, 11(1/T1) just below Tc
is enhanced over its normal-state value, which is a well-known
characteristic for an isotropic energy gap. The data below Tc
can be fitted by the BCS theory in a procedure described
previously,14,23 with a resulting gap amplitude "0 = 1.70,
1.56, 1.75, 1.50kBTc for x = 0, 0.2, 0.5, 0.8, respectively.
The parameter r = "(0)/δ that characterizes the height of the
coherence peak is 1.8, where δ is the energy-level broadening.
For x = 0.9 and 1, however, 11(1/T1) shows no coherence
peak just below Tc and is in proportion to T 3, which indicates
the existence of line nodes in the gap function.

The contrasting behavior for the two groups of x ! 0.8
and x " 0.9 is seen in 195Pt NMR as well. In Fig. 2(b) the T
dependence of 195(1/T1) for x = 0.5, 0.84, 0.9, and 1 is shown.
For x = 0.9 and 1, 195(1/T1) shows no coherence peak below
Tc and decreases in proportion to T 3.

To see the spin state of the Cooper pairs, the spin
susceptibility χs via a Knight shift measurement is the most
effective probe. The T dependence of the 195Pt Knight shift
(195K) for various x is shown in Fig. 3. The 195K for x = 0.2,
0.5, and 0.8 decreases below Tc. It also does so for x = 0.84,
but the reduction is smaller. For x = 0.9 and 1, however, 195K
remains unchanged across Tc.

In order to evaluate quantitatively the evolution of χs, one
needs to know the Knight shift due to orbital susceptibility
Korb since generally K = Korb + Ks, where the spin part Ks is
proportional to χs or the density of states (DOS) at the Fermi
level, N (EF ). 7Li NMR is useful for estimating 195Korb. All 7Li
electrons are in s orbits and the angular moment L = 0, so that
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FIG. 4: Superconducting state properties of RPdBi single crystals. a, Resistivity of RPdBi at temperatures below 2 K,
showing superconducting transitions for each compound. b, Temperature dependence of upper critical field Hc2 obtained
from the resistive transition for YPdBi, LuPdBi and DyPdBi. The inset shows the normalized upper critical field h⇤ =
Hc2/TcdHc2/dT |T=Tc as a function of normalized temperature t = T/Tc for YPdBi, with dashed line indicating the expectation
for a polar p-wave state. c, AC susceptibility of single-crystal samples of RPdBi. The magnitude of the screening below the
superconducting transition is comparable to a test sample of superconducting aluminum, confirming bulk diamagnetic screening
(see text). d, heat capacity C/T as a function of T 2 for LuPdBi. Solid line is a fit to the data using C/T = �+�T 2, where �T
is the electronic and �T 3 is the phonon contribution to the specific heat. Inset: enlarged view of the C/T vs T 2 near Tc ⇠ 1.5
K.
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FIG. 5: Phase diagram of RPdBi series, indicating evolution of superconducting (SC) and antiferromagnetic (AFM) ground
states as a function of de Gennes factor dG = (gJ � 1)2J(J + 1). The superconducting transition Tc (blue) is obtained from
the midpoint of the resistive transition (circles; upper and lower error bars indicate onset and zero resistance) and the onset
of diamagnetism in AC susceptibility (diamonds), and Néel temperature TN (red triangles) is obtained from DC magnetic
susceptibility. The plotted Tc is scaled by a factor of 10, and solid lines are guides to the eye. Note that Tc (TN ) for SmPdBi
is lower (higher) than that for HoPdBi. Inset: unscaled Tc and TN as a function of dG.
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FIG. 4: Superconducting state properties of RPdBi single crystals. a, Resistivity of RPdBi at temperatures below 2 K,
showing superconducting transitions for each compound. b, Temperature dependence of upper critical field Hc2 obtained
from the resistive transition for YPdBi, LuPdBi and DyPdBi. The inset shows the normalized upper critical field h⇤ =
Hc2/TcdHc2/dT |T=Tc as a function of normalized temperature t = T/Tc for YPdBi, with dashed line indicating the expectation
for a polar p-wave state. c, AC susceptibility of single-crystal samples of RPdBi. The magnitude of the screening below the
superconducting transition is comparable to a test sample of superconducting aluminum, confirming bulk diamagnetic screening
(see text). d, heat capacity C/T as a function of T 2 for LuPdBi. Solid line is a fit to the data using C/T = �+�T 2, where �T
is the electronic and �T 3 is the phonon contribution to the specific heat. Inset: enlarged view of the C/T vs T 2 near Tc ⇠ 1.5
K.
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Summary
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We have studied superconductivity and magnetism in the 
topological half semimetal RPdBi. 

• fcc type II AFM with Q = (1/2, 1/2, 1/2) 

• Anticorrelation between Tc and TN, well-scaled by de 
Gennes factor 

• Anomalous SC: Triplet dominant? BCS-BEC crossover? 

Strong candidate for tunable topological materials with 
multi-symmetry breaking

Yasuyuki Nakajima





Combination of topological and symmetry-breaking order
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SC AFM Topo
Y ✓ ✘ ✘

Lu ✓ ✘ ✓
Tm ✓ ✓(?) ✓
Er ✓ ✓ ✓
Sm ✓ ✓ ✘

Ho ✓ ✓ ✓
Dy ✓ ✓ ✘

Tb ✓(?) ✓ ✘

Gd ✘ ✓ ✘


