Spin-Orbit Coupling & Relativistic Quantum Materials Summer School

Max Planck Institute for Solid State Research

Leggett modes and the Anderson-Higgs mechanism in superconductors without inversion symmetry

Nikolaj Bittner

Dietrich Einzel (WMI), Ludwig Klam (MPI) and Dirk Manske (MPI)

N. Bittner et al., arXiv:1503.08133 (accepted to PRL)

Outline

I) introduction & motivation

- \rightarrow non-centrosymmetric superconductors
- \rightarrow collective mode in a nutshell

II) theory

- \rightarrow model description of NCS
- ightarrow matrix kinetic equation
- III) results
 - \rightarrow New Leggett modes
 - \rightarrow Anderson-Higgs mechanism

- » Singlet superconductors
 - $T \mid \mathbf{k}, \uparrow \rangle = \mid -\mathbf{k}, \downarrow \rangle$ Time reversal symmetry
- » Triplet superconductors
 - $T \mid \mathbf{k}, \uparrow \rangle = \mid -\mathbf{k}, \downarrow \rangle$ Time reversal symmetry
 - $I \mid \mathbf{k}, \uparrow \rangle = \mid -\mathbf{k}, \uparrow \rangle$ Inversion symmetry

Anderson's theorem *)

Superconductors without inversion center?

» Non-centrosymmetric superconductors

*) P. W. Anderson, Phys. Rev. B 30 (1984)

NCS: Strong Rashba-type SOC, γ_k

E. Bauer et al. (2004)

- \rightarrow point group C_{4V}
- → evidence for a singlet as well as a triplet order parameter
- ightarrow triplet-to-singlet ratio $t = \Delta_{tr} / \Delta_s$ is unknown

 $\rightarrow\,$ Mixing of the singlet and the triplet components of the order parameter

$$\Delta_{\boldsymbol{k}\mu} = \Delta_{s} + \mu \Delta_{tr} \|\boldsymbol{\gamma}_{\boldsymbol{k}}\|$$

 \rightarrow weak-coupling pairing interaction ansatz:

 \circ Singlet Γ_{s} \circ Triplet Γ_{tr} \circ mixing Γ_{m}

(Dzyaloshinskii-Moriya)

Examples for γ_k

Rashba coupling (axial)

pseudo-isotropic

Collective modes in a nutshell

One-band superconductor

broken gauge-symmetry

Gauge mode gets shifted to the plasma frequency (Anderson-Higgs mechanism)

P. W. Anderson (1963), P. W. Higgs (1964)

phase fluctuation

Collective modes in a nutshell

One-band superconductor

broken gauge-symmetry

Gauge mode

Gauge mode gets shifted to the plasma frequency (Anderson-Higgs mechanism)

P. W. Anderson (1963), P. W. Higgs (1964)

Two-band superconductor

Leggett's collective mode, ω_L

$$\omega_L^2 = 4 |\Delta_1| |\Delta_2| \frac{V_{12}}{V_{11}V_{22} - V_{12}^2}$$

A. J. Leggett (1966)

- » no analogue in the one band case
- » intrinsic Josephson effect

» Experimental evidence in Raman response for MgB₂ G. Blumberg et al., (2007)

Collective modes in

non-centrosymmetric superconductors?

I) introduction & motivation

- ightarrow non-centrosymmetric superconductors
- ightarrow collective mode in a nutshell

II) theory

- ightarrow model description of ncs
- ightarrow matrix kinetic equation

III) results

- \rightarrow New Leggett modes
- \rightarrow Anderson-Higgs mechanism

Model description of ncs

ightarrow Two band description in the helicity band basis

Unitary transformation **Hamiltonian** in the **band basis**:

singlet

$$\widehat{H}_{ncs} = \begin{pmatrix} \xi_{k+} & 0 & 0 & \Delta_{k+} \\ 0 & \xi_{k-} & -\Delta_{k-} & 0 \\ 0 & -\Delta_{k-}^* & -\xi_{k-} & 0 \\ \Delta_{k+}^* & 0 & 0 & -\xi_{k+} \end{pmatrix} \text{ with } \xi_{k\mu} = \xi_k + \mu \| \boldsymbol{\gamma}_k \|$$

 \rightarrow NEW Order parameter:

and

triplet

Matrix Kinetic Equation

External perturbation: $\phi(\boldsymbol{q}, \omega)$

deviation of the density matrix

$$\underline{n}_{k}(\boldsymbol{q},\omega) = \underline{n}_{\boldsymbol{k}}^{0} + \delta \underline{n}_{k}(\boldsymbol{q},\omega)$$

collisionless quantum dynamics

von Neumann equation in Nambu space:

$$i\hbar \frac{\partial}{\partial t} \underline{n}_{k} + [\underline{n}_{k}, \underline{\widehat{H}}] = 0 \qquad \underline{\widehat{H}} = \widehat{H}_{ncs} + \delta \underline{\widehat{H}}(\boldsymbol{q}, \omega)$$

- ightarrow 4x4 matrix equation in spin- and particle-hole space
- ightarrow Equivalent to the Landau-Boltzmann equation in the normal state
- \rightarrow Diagonal elements

- analytical results for the momentum distribution function, δn_s
- Nondiagonal elements analytical results for the phase fluctuations of the order parameter

I) introduction & motivation

- ightarrow non-centrosymmetric superconductors
- ightarrow collective mode in a nutshell

II) theory

- ightarrow model description of ncs
- ightarrow matrix kinetic equation

III) results

- \rightarrow New Leggett modes
- \rightarrow Anderson-Higgs mechanism

Results: Anderson-Higgs mechanism in NCS (I)

Condensate density response

$$\delta n_{s} = \frac{\omega_{Gq}^{2} \left(\omega^{2} - \omega_{Lq}^{\prime 2}\right) \sum_{\alpha} \langle \lambda_{p\alpha} \rangle}{\omega^{4} - \omega^{2} \left(\omega_{P}^{2} + \omega_{Gq}^{2} + \omega_{Lq}^{2}\right) + \left(\omega_{P}^{2} + \omega_{Gq}^{2}\right) \omega_{Lq}^{\prime 2}} e\Phi$$

Gauge (Anderson-Bogoliubov) boson

$$\omega_{1}^{2} = \omega_{Gq}^{2} + \mathcal{O}\left(\frac{\omega_{Gq}^{4}}{\omega_{Lq}^{2}}\right) \text{ with } \omega_{Gq}^{2} = \frac{\sum_{\mu} \left\langle \left(\boldsymbol{q} \cdot \boldsymbol{v}_{p\mu}\right)^{2} \lambda_{p\mu} \right\rangle}{\sum_{\mu} \left\langle \lambda_{p\mu} \right\rangle}$$

massless order parameter collective mode

Condensate density response

$$\delta n_{S} = \frac{\omega_{Gq}^{2} \left(\omega^{2} - \omega_{Lq}^{\prime 2}\right) \sum_{\alpha} \langle \lambda_{p\alpha} \rangle}{\omega^{4} - \omega^{2} \left(\omega_{P}^{2} + \omega_{Gq}^{2} + \omega_{Lq}^{2}\right) + \left(\omega_{P}^{2} + \omega_{Gq}^{2}\right) \omega_{Lq}^{\prime 2}} e\Phi$$

Gauge (Anderson-Bogoliubov) boson

$$\omega_1^2 = \omega_P^2 + \omega_{Gq}^2 + \mathcal{O}\left(\frac{\omega_{Lq}^2}{\omega_P^2}\right) \quad \text{with} \quad \omega_{Gq}^2 = \frac{\sum_{\mu} \left\langle \left(\boldsymbol{q} \cdot \boldsymbol{v}_{p\mu}\right)^2 \lambda_{p\mu} \right\rangle}{\left\langle \lambda_{p\mu} \right\rangle}$$

$$\omega_{Gq}^2 \to \omega_P^2 + \omega_{Gq}^2$$

condensate plasma frequency

$$\omega_P^2 = \frac{4\pi n e^2}{m q^2} \sum_{\mu} \left\langle \left(\boldsymbol{q} \cdot \boldsymbol{v}_{p\mu} \right)^2 \lambda_{p\mu} \right\rangle$$

Condensate density response

$$\delta n_{S} = \frac{\omega_{Gq}^{2} \left(\omega^{2} - \omega_{Lq}^{\prime 2}\right) \sum_{\alpha} \langle \lambda_{p\alpha} \rangle}{\omega^{4} - \omega^{2} \left(\omega_{P}^{2} + \omega_{Gq}^{2} + \omega_{Lq}^{2}\right) + \left(\omega_{P}^{2} + \omega_{Gq}^{2}\right) \omega_{Lq}^{\prime 2}} e\Phi$$

Main results:

New Leggett modes

$$\omega_2^2 = \omega_{Lq}^2 + \mathcal{O}\left(\frac{\omega_{Gq}^4}{\omega_{Lq}^2}\right)$$
 with $\omega_{Lq}^2 = \Lambda_0^2 + \nu^2 q^2$

massive order parameter collective mode

Condensate density response

$$\delta n_{S} = \frac{\omega_{Gq}^{2} \left(\omega^{2} - \omega_{Lq}^{\prime 2}\right) \sum_{\alpha} \langle \lambda_{p\alpha} \rangle}{\omega^{4} - \omega^{2} \left(\omega_{P}^{2} + \omega_{Gq}^{2} + \omega_{Lq}^{2}\right) + \left(\omega_{P}^{2} + \omega_{Gq}^{2}\right) \omega_{Lq}^{\prime 2}} e\Phi$$

Main results:

New Leggett modes

$$\omega_2^2 = \omega_{Lq}^{\prime 2} + \mathcal{O}\left(\frac{\omega_{Lq}^2}{\omega_P^2}\right)$$
 with $\omega_{Lq}^{\prime 2} = \Lambda_0^2 + v^{\prime 2}q^2$

Leggett mode remains almost **unaffected** by the Higgs mechanism

October 23, 2015 13

Results: New Leggett modes in ncs (I)

Dispersion

N. Bittner

- ightarrow Propotional to q^2 in leading order
- \rightarrow Depends on the triplet-to-singlet ratio $t = \Delta_{tr}/\Delta_s$

 $\boldsymbol{\gamma}_{\boldsymbol{k}} = \boldsymbol{\gamma}_{\perp} (\hat{\boldsymbol{k}} \times \hat{\boldsymbol{e}}_{z}) \dots$

Results: New Leggett modes in ncs (II)

Mass

N. Bittner

Generalized Leggett mass

$$\Lambda_0^2 = 4\gamma_{ncs} \ \Delta_s \Delta_{tr} \ \frac{\sum_{\mu} \langle \lambda_{p\mu} \rangle}{\lambda_0 \lambda_2 - \lambda_1^2}$$

with order parameter:

$$\Delta_{\boldsymbol{k}\lambda} = \Delta_{\boldsymbol{s}} + \mu \,\,\Delta_{tr} \,\|\boldsymbol{\gamma}_{\boldsymbol{k}}\|$$

DEPENDENCE ON THE POINT GROUP SYMMETRY !

 $\lambda_n \propto \|\gamma_k\|^n$

١

 \rightarrow Numerical results

→ Analytical solution (dashed lines) for
$$t = \frac{\Delta_{tr}}{\Delta_s} \rightarrow 0$$

→ If $\Gamma_s \approx \Gamma_{tr} \Rightarrow \Lambda_0 \rightarrow 0$

Summary

Leggett mode

- exists in non-centrosymmetric superconductors
- \rightarrow depends on the **triplet-to-singlet** ratio $t = \Delta_{tr} / \Delta_s$ via γ_k
- \rightarrow under certain conditions **massless**
- remains almost unaffected by the Higgs mechanism

N. Bittner et al., arXiv:1503.08133 (accepted to PRL)

Gauge mode

ightarrow depends on the **point group symmetry**

ightarrow gets shifted to the plasma frequency by the Higgs mechanism