
Part 2:  
 3d  transition metal oxides

• ZnV2O4 
• CaV2O4 
• 1d spin-orbital chain



Spin-orbital physics in  
3d transition metal oxides

Giniyat Khaliullin, Prog. Theor. Phys. Suppl. 160, 155 (2005) 

Orbital degrees of freedom  should  incorporated in the  
super-exchange theory and the systems are  described by 
means of  effective Kugel-Khomskii spin-orbital models.  
In these models, magnetic  and orbital orders are usually 
connected. The orbital order might be stabilized by lifting  
of orbital degeneracy either by lattice distortions, orbital 
interactions  or spin orbit coupling.



                Family of AV2O4                       
AO4 

VO6 

Spinels: 
ZnV2O4 
MnV2O4

Calcium-ferrite structure: 
CaV2O4 

V(1)O6 

V(2)O6 



Vanadium spinel: ZnV2O4

Pyrochlore lattice 
H. Mamiya et al, JAP 1997 
M. Reehuis et al, EPJB  2003 
S.-H. Lee et al, PRL 2004 
E. M. Wheeler et al, PRB 2010 
S.-H. Lee et al, PRL 2005 

Structural (cubic-tetragonal): Ts=52K 

      

Magnetic (para-antiferro): TN=44K 
  

Temperature-induced change in dimensionality,  
because of orbital degrees of freedom 

AFM 1D order, consistent with a set of spin 
chains 



Single-ion properties of V3+
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Interactions between t2g-orbitals in AV2O4  

• Octahedra are edge-sharing 

AFM exchange 

FM exchange 

No exchange 

Static Potts-like orbital interactions  
            (only ddσ overlap) 

•  Only ddσ overlap 

t≠0 

Only  direct hopping,  
only diagonal hopping, 
and only along ”good” bond 



Structural (cubic-tetragonal): Ts=52K 

      

xy orbital is occupied

 Magnetic order in ZnV2O4

AFM chains along  (1,1,0)cub. 

From E. M. Wheeler et al, PRB 2010 



 Orbital order in ZnV2O4

V. Pardo et al. PRL 101, 256403 
 

Real Orbital Order Complex Orbital Order Dimerized state 

I41/a I41/amd P412121 

O.Tchernyshyov 
PRL 93 157206 

Y.Motome and H.Tsunetsugu  
PRB 70, 184427 

S. Di Matteo, G.Jackeli, NP,  
     PRB 72 020408(R) 

supported by SOC



Zigzag vanadium chains in CaV2O4 
 

J1 

J2 
J1 

J2 

V3+ 2
2gt S = 1 

Zigzag  spin-1 chain with comparable 
 nn and nnn interactions + an easy-plane  
anisotropy of V3+ ions 

Chiral spin liquid: a long-range  
chiral order + short range spin 
correlations 



Pieper et al, PRB 2009, Niazi et al, PRB 2009 

 Magnetic order in CaV2O4

Two collinear antiferromagnetic spin chains canted  
on 19 degrees with  respect to each other. 



Spin-orbital zigzag chain 

Degrees of  freedom: 

Chern, Perkins, PRB 2009 

V3+�(d2, S=1) 

t2g xy 

yz  
zx 

Strong AFM coupling of spins along blue 
rails. Interaction between spin chains is 
along zigzag bonds. 
 
Orbital degrees of freedom are Ising 
variables. Orbital interaction is along red-
green zigzag chain. 
  



Motivations for the simplified description 

!  ZnV2O4  and CaV2O4 are Mott insulators.  
!   Kugel-Khomskii-type  spin-orbital Hamiltonian is a 

natural approach for describing   magnetic and electronic 
properties. 

!  The orbital-dependent  super-exchange and tetragonal  
crystal field (xy is always occupied) lead to a formation 
of 1D orthogonal single chains in ZnV2O4 and zigzag 
chains  CaV2O4.  

!  Couplings between these spin-orbital chains are weak, 
but also geometrically frustrated.  Thus, ZnV2O4  and 
CaV2O4 are essentially quasi-1D systems. 

!  A common feature shared by AV2O4 compounds is the 
presence of a relativistic spin-orbit  interaction. 

!  Simple toy model: a S=1 Haldane chain and a AFM (FM) 
Ising chain locally coupled  by spin-orbit coupling.  



Toy model for quasi 1D vanadates 
CaV2O4 ZnV2O4 CaV2O4 ZnV2O4 

Haldane spin chain Orbital Ising chain Spin-orbit coupling 

Symmetry: 

Reduction of SU(2) to U(1)xZ2 



Spin-1 chain:  a singlet ground state with triply degenerate magnon 
excitations 

λ =0 limit                         

F. D. M. Haldane, 
 Phys. Lett. 93A, 464 (1983) 

S. R. White and D. A. Huse , 
 PRB 48,3844 (1993) 

   I. Affleck , 
 PRB  41, 6697 (1990) non-linear sigma model

Ising orbital chain: ferromagnetically ordered ground state with  
non-dispersive domain wall excitations .  

Jordan-Wigner transformation



  Finite λ � Perturbation theory

magnons
Jordan-Wigner fermions



The one-loop corrections to the magnon self-energy

The one-loop corrections to the domain-wall self-energy

Domain-walls become mobile

Magnon gap is renormalized



Order parameters  
 

Anisotropic  
spin liquid 

Neel LRO Anisotropic  
spin liquid Neel LRO 



 physics of vanadium oxides on 
frustrated lattices

Entanglement of orbital  and spin degrees … 

Reduction of dimensionality due to orbital 
anisotropy… 

Possibility  for spin, orbital and spin-orbital 
liquids… 

New models… 
  



More details in



Part 3:  
4d and 5d  transition metal oxides

• spin-orbit assisted Mott insulator 
• Kitaev interaction in real material 
• Na2IrO3 
• K1-K2 model 





Unrealistically 
large U (~ 8-10 eV) 

HSO: 
two splited bands 

U~ W: 
effectively 
enhanced 
correlation 
effect 

 B. J. Kim et al., PRL 101 (2008) 076402 

Iridates: spin-orbit assisted Mott insulator

Sr2IrO4



 Pseudospins instead of  spins in systems with strong SOC

G. Jackeli and G. Khaliullin, 
 PRL 102, 017205 (2009) 

eg

t2g

~2 eV

λso = 0.4eV

Jeff = 1/2

Jeff = 3/2

3/2λso

J = L + SIr4+ - 5d5

Ru3+ - 4d5
Rh4+ - 4d5

( )21,21,21,
3
1

2/1 ∓∓ zxiyzxyJeff +±±=

2) The form of magnetic interactions is no longer dictated by spin symmetry  
alone but is determined by the combination of spin and lattice symmetries.

Why Jeff = 1/2 magnets are  interesting? 
1) Complex phase i, coming  from the contribution of orbital angular 
momentum into J, will manifest itself  in magnetic coupling. 



G. Jackeli and G. Khaliullin, 
 PRL 102, 017205 (2009) 

The form of the anisotropy term depends on the lattice.


Dipole-dipole interaction Kitaev interaction

Sr2IrO4
Na2IrO3 
Li2IrO3





B J Kim group 2015

Low-temperature nodal Fermi surface and
high-temperature Fermi arcs (ARPES)



Kitaev model on the honeycomb lattice

A. Kitaev, Annals of Physics 321, 2 (2006)

Exactly solvable 2D model

 Spin liquid ground state

Fractionalized excitations 
…



 Let’s derive Kitaev interaction
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Next step is a usual perturbation theory.

 For the total exchange one gets:

JK =
(...)

E0 � E""
� (...)

E0 � E"#
⇠ E"" � E"# ⇠ JH

  This is the essence  of the derivation  
of the Kitaev interaction



A bit more general approach…
Step 1: find single particle states from diagonalization of the   
single-ion Hamiltonian H=SOC + CF                                          :

 The basis we use is



 Diagonalization of single-ion Hamiltonian leads to three 
doublets at energies, corresponding to a single-hole states

 Since the Hamiltonian is time-reversal invariant, the 
ground-state of the single-ion single-hole is a Kramer's 
doublet, which can be described by a pseudospin-1/2.



Step 2: find two-hole states in the presence of 
interactions,spin-orbit coupling and crystal field interaction.                              

 There are  15 partly degenerate two-hole states, which can be 
obtained by diagonalization of the full Hamiltonian:



 For the basis we can use  the product of single-hole states 
states:

diagonalization



Step 3: strong coupling approach.  For nearest neighbor 
coupling,  it is a second order perturbation theory expansion  
in the effective hopping parameters .                           

 The projection operators onto 
two-hole intermediate states

 The projection operators onto 
one-hole ground states



Step 4:  write the super-exchange Hamiltonian can be written 
in terms of the magnetic degrees of freedom                           

Goal achieved:  
we find  how the exchange coupling tensor depends on the 
 microscopic parameters - CF distortion, Hund's coupling, 
Coulomb interaction and SO coupling.



A2IrO3

G. Jackeli and G. Khaliullin, 
 PRL 102, 017205 (2009) 

Super-exchange in

0 0.80.4 10.5

Neel
AFM

Stripy
AFM Spin

liquid

Kitaev spin liquid is stable 
against Heisenberg perturbations!



Na2IrO3 orders in AFM zigzag structure
Singh and Gegenwart, PRB 82, 064412 (2010); 
Singh et al, PRL 108, 127203 (2012)  

X. Liu et al, PRB 2011 
Feng Ye et al, PRB 2012 

S. K. Choi et al  PRL 2012 



S.H.Chun et al, Nature Physics 2015 

Locking of the spin direction to the spatial 
orientation of the zigzag in Na2IrO3

Diffuse magnetic x-ray scattering

Spin-component-resolved 
equal-time correlations



Revision of the super-exchange  model for 
Na2IrO3

Kateryna Foyevtsova et al, PRB 2013 



Revision of the super-exchange  model for 
Na2IrO3

Kateryna Foyevtsova et al, PRB 2013 

Second neighbors hopping

Kitaev interaction



 J1-K1-J2-K2 model
Na2IrO3 

zigzag 

Y.Sizyuk, C.Price, P. Wölfle, N.B.P., PRB 2014

𝛳CW≈-98 K

J1 = 5.1meV, K1 = �14.8meV

J2 = �4.5meV, K2 = 9meV



Locking of the spin direction to the spatial 
orientation of the zigzag in Na2IrO3

S = S0 + Sfl(✓,�)

Sfl(�)

spin fluctuations select one of 
the diagonals in xy-planeY.Sizyuk, N.B.P, P. Wölfle 2015



Importance of Kitaev interactions for Na2IrO3

— the dominant interaction is nearest neighbor FM K1 interaction;

—AFM second neighbor K2 coupling is the largest energy scale K1;

— interplay of K1 and K2  stabilize the zigzag AFM state;

— K2  provides a natural basis to account for the  large and AFM 
Curie-Weiss temperature and  also explains correct  orientation of 
the spatial spin direction.



K1-K2 model on the honeycomb lattice

Talk by  Ioannis Rousochatzakis  on Saturday



More details in



Thank you




