SOI and symmetry: Lifting the Kramers' degeneracy

1. $E(k,\uparrow) = E(-k,\downarrow)$ *time-reversal* symmetry 2. $E(k,\uparrow) = E(-k,\uparrow)$ *inversion* symmetry

1+2. $E(k,\uparrow) = E(k,\downarrow)$ Kramers' degeneracy

In the bulk of a non-CS solid or at the surface, inversion symmetry is broken

With SO interaction:
$$E(k,\uparrow) \neq E(k,\downarrow)$$

without external magnetic field

Except at Γ and at a few other "special" (TRI) points

The Rashba effect in a 2DEG

Free electrons at the surface "see" an electric field

$$\vec{E} = -\nabla V = -\frac{dV}{dz}\vec{e}_z$$

and a magnetic field
$$\vec{B}_{eff} = \frac{1}{c^2} \vec{v} \times \vec{E} = \frac{\hbar}{m^* c^2} \vec{k} \times \vec{E}$$

B_{eff}

E. Rashba

$$H_{SOC} \approx -\vec{\mu}_S \cdot \vec{B} = \alpha_R (\vec{e}_z \times \vec{p}) \cdot \sigma$$

The quantization axis is linked to k

Spin polarization

The expected Rashba energy E_R is very small: $E_R \sim 10^{-6}$ eV!

Rashba vs. Zeeman

External in-plane B

The spin polarization

SO mixes UP and DOWN spins

$$|\psi_{+}(\vec{k})\rangle = \frac{e^{i(k_{x}x+k_{y}y)}}{2^{1/2}} \left(|\uparrow\rangle + e^{i\phi(k)}|\downarrow\rangle\right)$$
 Upper branch

$$|\psi_{-}(\vec{k})\rangle = \frac{e^{i(k_x x + k_y y)}}{2^{1/2}} \left(|\uparrow\rangle - e^{i\phi(k)}|\downarrow\rangle\right)$$
 Lower branch

$$\langle \sigma_x \rangle_{\pm} = \pm \cos \phi(k) ;$$

 $\langle \sigma_y \rangle_{\pm} = \pm \sin \phi(k) ;$
 $\langle \sigma_z \rangle_{\pm} = 0$

Spin polarization

Time Reversal Invariant points

 $E(\vec{k},\uparrow) = E(-\vec{k},\downarrow) \quad \text{TR symmetry}$ $k = 0 \quad \rightarrow \quad E(\Gamma,\uparrow) = E(\Gamma,\downarrow)$

$$\begin{split} E(M,\uparrow) &= E(M',\downarrow) & \text{TR symmetry} \\ E(M',\downarrow) &= E(M'+\vec{G},\downarrow) = E(M,\downarrow) & \text{Translational} \\ E(M,\uparrow) &= E(M,\downarrow) & \text{symmetry} \end{split}$$

Square symmetry

$$\begin{split} E(X,\uparrow) &= E(X',\downarrow) & \text{TR symmetry} \\ E(X',\downarrow) &= E(X'+\vec{G},\downarrow) = E(X,\downarrow) & \text{Translational} \\ E(X,\uparrow) &= E(X,\downarrow) & \text{symmetry} \end{split}$$

Spin manipulation without magnetic fields

Polarized electrons are injected in a mixed |up > + |down> spin state. The spin precesses along the channel: $\Delta \theta \approx L \alpha_R$ It can be modulated by V_G

For InGaAs/InAlAs heterojunctions: $L(\Delta \theta = \pi) \approx 0.5 \mu m$

Shockley state at the Au(111) surface : ARPES

The circular Fermi surface is split into two spin-polarized branches LaShell et al., PRL (1997). Reinert et al., PRB (2001).

Fermi energy Energy Au(111) surface state Wave vector k_x

Spin polarization

M. Hoesch et al., (2004)

Much stronger fields near the nuclei !

Surf. Sci. 459, 49 (2000)

Much larger splittings are possible

Single-layer solids - ARPES

J.A. Miwa et al., PRL **114**, 046802 (2015)

Y. Zhang et al., Nat. Nanotech. 9, 111 (2014)

Surface alloys with high-Z elements: Bi/Ag(111)

Ast et al., Phys. Rev. Lett. **98**, 186807 (2007)

Μ

Γ'

In-plane symmetry breaking and anisotropy

ARPES constant energy cuts in k-space

Unlike the case of Au(111) the spin-split FS is clearly influenced by the crystal potential in-plane gradient

Simple (Au(111))

More realistic

Turning the band-filling knob: Pb-Ag(111)

Same structure: BiAg₂ surface alloy

Rigid band shift to accommodate the extra electron

The **splitting** of the bands increases by a **factor 4** between PbAg₂ and BiAg₂ (the atomic SO parameter is 40% larger)

Spin splitting and the density of states

Signatures of spin-split states in tunneling spectra

Bi/Ag(111)

Pb/Ag(111)

"1D-like divergence"

Chemical tuning of E_F and of the SO splitting

(Bi_xPb_{1-x})Ag₂ ordered alloys

Internal calibration from core levels

THEORY (J. Henk)

Adjusting the spin pattern by interface engineering

The spin pattern varies along the split band

Two different situations are realized by tuning E_F through the band as a function of stoichiometry

Thin Ag layer : quantum well states

K. He et al., PRL 101, 107604 (2008).

BiTel: Rashba and Dresselhaus

SP-ARPES

Rashba spin pattern

K. Ishizaka et al., Nature Mat. 10, 521 (2011)

More intriguing: two surface terminations

CORE LEVELS

Ambipolar Rashba effect

A. Crepaldi et al., PRL 109, 096803 (2012)

Surface AND bulk states

Tuning the band bending by surface doping

The SO interaction switches bands around the gap

"Edge states" in 3D insulators

"Trivial" and topological insulators differ in a topologically invariant quantity (related to the symmetry properties of the wavefunctions)

Bi₂Se₃ thin films: from Rashba to TI layer-by-layer

Yi Zhang et al., Nature Phys. 6, 584 (2010)

Pumping electrons into the empty states: tr-ARPES

RIXS: optics...with a twist

RIXS probes multiple energy scales

Chemical selectivity from core hole, but the final state has no core hole → high resolution **q dependence** Photon in - photon out: OK for insulators; external fields Sensitive to spin excitations

Ament et al., (2011)

hv

hv'

RIXS: Raman with x-rays

$L_{2.3}$ edges $2p \rightarrow 3d$; directly probes the *d* states

Ruthenates...again – RIXS probes inter- t_{2q} excitations

Low-energy excitations: spin flips

Photons do not couple directly to spins, but...

- F.M.F. De Groot et al., PRB 57, 14 548 (1998)

- LJP Ament et al., PRL 103, 117003 (2009)
- MW Haverkort, PRL 105, 167404 (2010)
- T. Nagao and J. Igarashi, PRB 85, 224436 (2012)

Spin-orbit is large in the intermediate state. S is not a good quantum number $\Delta S_z \neq 0$ transitions are possible !

One flipped spin NOT an eigenstate for the solid: dispersion

Magnons in a 2D S=1/2 Heisenberg AF: $Sr_2CuO_2O_2$

Line shape analysis of the magnetic excitations

MBZ boundary dispersion: why is it interesting ?

Dispersion along MBZ boundary is due to exchange interactions beyond NN

Notice: sub-mm samples !

R. Coldea et al., PRL 86, 5377 (2001); N.S. Headings et al., PRL 105, 247001 (2010)

Paramagnons in the doped cuprates

Intense paramagnon excitations in a large family of high-temperature superconductors

M. Le Tacon^{1*}, G. Ghiringhelli², J. Chaloupka¹, M. Moretti Sala², V. Hinkov^{1,3}, M. W. Haverkort¹, M. Minola², M. Bakr¹, K. J. Zhou⁴, S. Blanco-Canosa¹, C. Monney⁴, Y. T. Song¹, G. L. Sun¹, C. T. Lin¹, G. M. De Luca⁵, M. Salluzzo⁵, G. Khaliullin¹, T. Schmitt⁴, L. Braicovich² and B. Keimer^{1*} NATURE PHYSICS | VOL 7 | SEPTEMBER 2011

Conclusion

References

F.M.F. de Groot et al., Phys. Rev. B 40, 5715 (1989).

- U. Fano, Phys. Rev. 178, 131 (1969).
- C. Fatuzzo et al., Phys. Rev. B **91**, 155104 (2015).
- J. Kessler, *Polarized Electrons* 2nd ed., Springer Series on Atoms and Plasmas, Vol. 1 (1985)
- J. Kirschner, Polarized Electrons at Surfaces, Springer Tracts in Modern Physics, Vol. 106 (1985)
- F. Clerc et al., J. Phys.: Condens. Matt. 16, 3271 (2004)
- J. Stöhr and H.C. Siegmann, "Magnetism", Springer Solid-State Sciences (2006)
- T. Mizokawa et al., Phys. Rev. Lett. 87, 077202 (2001)
- B.T. Thole and G. van der Laan, Phys. Rev. Lett. 67, 3306; Phys. Rev. B 44, 12424 (1991)
- G. van der Laan and B.T. Thole, Phys. Rev. B 48, 210 (1993)
- C. De Nadai et al., Phys. Rev. B 70, 134409(2004)
- C.N. Veenstra et al., Phys. Rev. Lett. 112, 127002 (2014)
- S. Moser et al., N. J. Phys. 16, 013008 (2014)
- Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984)
- M. Hoesch et al., Phys. Rev. B 69, 241401(R) (2004)
- C.R. Ast et al., Phys. Rev. Lett. 98, 186807 (2007)
- L.J.P. Ament et al., Rev. Mod. Phys. 83, 705 (2011)
- F.M.F. De Groot et al., Phys. Rev. B 57, 14 548 (1998)
- M. Guarise et al., Phys. Rev. Lett. 105, 157006 (2010)
- M. Le Tacon et al., Nat. Phys. **7**, 725 (2011)

Spin-orbit spectrum: caveats

