Spin-orbit and spectroscopies from atoms to solids

Vancouver – 22.10.2015

Plan of the lectures

Lecture 1

- Generalities on SOI
- Techniques: XAS, PES, RIXS
- Polarized electrons: XMCD and SP-PES
- Exemples

Lecture 2

- The Rashba effect
- From Rasba to TI's
- SOI and RIXS

General consideration

Spin-orbit: where from?

Spin-orbit: hydrogen atom

A magnetic field appears in the electron's rest frame:

$$\vec{B} = -\frac{1}{c^2} \vec{v} \times \vec{E} = \frac{1}{m_e c^2} \vec{p} \times \frac{1}{q} \frac{dV(r)}{dr} \frac{\vec{r}}{r} = -\frac{1}{qm_e c^2} \vec{r} \times \vec{p} \frac{1}{r} \frac{dV(r)}{dr} = \frac{1}{qm_e c^2} \frac{1}{r} \frac{dV(r)}{dr} \vec{L} ,$$

Which entails the interaction term (Thomas' s precession yields the extra 1/2):

$$E_{SO} = -\frac{1}{2} \vec{M} \cdot \vec{B} = -\frac{q}{m_e} \vec{S} \cdot \vec{B} \quad \rightarrow \quad H_{SO} = \frac{1}{m_e^2 c^2} \frac{1}{r} \frac{dV(r)}{dr} \vec{L} \cdot \vec{S}$$
$$V = -\frac{Ze^2}{r}; \quad \alpha = \frac{e^2}{\hbar c} = \frac{1}{137}; \qquad H_{SO} = \frac{Z\hbar^2 \alpha^2}{2m_e^2 e^2} \frac{1}{r^3} \vec{L} \cdot \vec{S} = \boldsymbol{\xi}(r) \vec{L} \cdot \vec{S}$$
$$\vec{L} \cdot \vec{S} = \frac{1}{2} (J^2 - L^2 - S^2)$$

Spin-orbit: hydrogen(oid) atom (Z protons, 1 electron)

Without spin-orbit:
$$\mathbf{L}^2$$
; \mathbf{L}_z ; \mathbf{S}^2 ; \mathbf{S}_z ; \mathbf{J}^2 ; \mathbf{J}_z commute. Eigenstates:
 $|n;l;m_l;\pm\rangle$; $j = l \pm \frac{1}{2}$

With spin-orbit: \mathbf{H}_{so} ; \mathbf{J}_z ; \mathbf{J}^2 commute. The eigenstates $|n; j; m_j \rangle$ are appropriate combinations of the $|n; l; m_l; \pm \rangle$

$$E_{nlj} = \langle jm_j | H_{SO} | jm_j \rangle = \frac{Z\hbar^2 \alpha^2}{2m_e^2} \langle \frac{1}{r^3} \rangle \langle jm_j | \vec{S} \cdot \vec{L} | jm_j \rangle = \begin{cases} \mathbf{angular} \\ \mathbf{$$

Textbook example: the 2p states of hydrogen

Textbook example: the 2p states of hydrogen

VECTOR MODEL

Preliminary considerations

The SOI couples the orientation of the magnetic moments to the crystal directions

 \rightarrow magnetic anisotropy, new quantum states...

Moreover, e.m. waves interact with L, not with S. However SOI couples L and S, so that we can probe S with light!

- → Circular magnetic dichroism: absorption (XMCD); photoemission (SP-PES)
- → Resonant inelastic x-ray scattering

Spectroscopic probes

PES – ARPES – SP-ARPES

The Mott polarimeter – spin-orbit, again !

XAS: unoccupied states

Beyond the single particle picture

The XAS~DOS picture breaks down when the final states are strongly correlated: TM 3d states

The atomic-like multiplet structure is a fingerprint of the *ground state* configuration...

Photons do it all: resonant inelastic x-ray spectroscopy (RIXS)

Example - Cu L3 RIXS: $3d^9 \rightarrow 2p^5 3d^{10} \rightarrow 3d^9$

Spin-orbit: rare gases

Solids: core levels - PES

HANDBOOK OF X-RAY PHOTOELECTRON SPECTROSCOPY

Solids: core levels - PES

De Groot and Kontani (2008)

Solids: core levels - XAS

Solids: valence bands - PES

2 Li

PES – noble metals

Solids: valence bands - ARPES

The Fano effect: polarized electrons from unpolarized atoms

Goal(s): to determine separately the spin- and orbital moments (and the expectation values of other observables)

XAS: Transitions into low-lying (localized) correlated final states, polarized by an external field or because of magnetic order

- The Pauli principle enforces spin anisotropy

PES: Transitions to free-electron final states, weakly correlated and non-polarized

- No need for macroscopic magnetization
- typically needs spin detection

Dichroism in XAS

An atomic model

Stöhr and Siegmann

XMCD sum rules: quantitative determination of m_{orb} e m_{spin}

Photoemission – Polarization and spin detection

TABLE I. The six fundamental photoemission spectra I^{xy} , which are linear combinations of the primitive spin-polarized spectra. x = 0, 1, 2 denotes isotropically, circularly, and linearly polarized radiation, respectively. y = 0, 1 denotes without and with spin-polarization measurement, respectively. In the column labeled z, a value 1, 2, or 3 denotes that $\langle M \rangle$, $\langle M^2 - \frac{1}{3}J(J + 1) \rangle$, or $\langle M^3 - \frac{3}{5}M[J(J+1) - \frac{1}{3}] \rangle$ in the ground state has to be nonzero to obtain the spectrum; z = 0 denotes the value of the monopole, which is always unity.

Ixy	Combination of primitive spectra	Z	Significance
I ⁰⁰	$I_{1\uparrow} + I_{0\uparrow} + I_{-1\uparrow} + I_{1\downarrow} + I_{0\downarrow} + I_{-1\downarrow}$	0	Isotropic spectrum
I^{01}	$I_{1\uparrow} + I_{0\uparrow} + I_{-1\uparrow} - I_{1\downarrow} - I_{0\downarrow} - I_{-1\downarrow}$	1	Spin spectrum
I^{10}	$I_{11} - I_{-11} + I_{11} - I_{-11}$	1	Orbit spectrum (MCD)
I^{11}	$I_{1\uparrow} - I_{-1\uparrow} - I_{1\downarrow} + I_{-1\downarrow}$	0,2	Spin-orbit spectrum
I ²⁰	$I_{11} - 2I_{01} + I_{-11} + I_{11} - 2I_{01} + I_{-11}$	2	Anisotropic spectrum (MLD)
<i>I</i> ²¹	$I_{1\uparrow} - 2I_{0\uparrow} + I_{-1\uparrow} - I_{1\downarrow} + 2I_{0\downarrow} - I_{-1\downarrow}$	1,3	Anisotropic spin magnetic spectrum

Core level photoemission

Valence band: Integrated spin-orbit spectrum

$$\frac{\boldsymbol{\rho}^{11}}{\boldsymbol{\rho}^{00}} = \frac{2\boldsymbol{A}_1}{\boldsymbol{A}_0} \frac{\left\langle \sum_i \boldsymbol{l}_{zi} \, \boldsymbol{s}_{zi} \right\rangle}{\langle \boldsymbol{n} \rangle} = \frac{2\boldsymbol{A}_1}{\boldsymbol{A}_0} \frac{\left\langle \sum_i \boldsymbol{l}_i \cdot \boldsymbol{s}_i \right\rangle}{3\langle \boldsymbol{n} \rangle} \quad if \quad \langle \boldsymbol{M} \rangle = 0$$

ρ = integrated spectra
z = spin quantization axis, // k_{photon}

Unlike XMCD or XMLD SP-PES does not require FM or AFM order

Ca_2RuO_4 : an AFM (T_N =110K) Mott insulator

SP-ARPES - Sr_2RuO_4 : a spin-triplet superconductor?

SP-ARPES - Sr₂RuO₄: a spin-triplet superconductor?

It is not possible to associate a well-defined spin value to a state at the Fermi surface. Cooper pairs cannot be simply described as "singlets" or "triplets"

C.N. Veenstra et al., PRL (2014)

Strong SOI in 5d TM compounds: the iridates

