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Ettore Majorana (1906–1938) disappeared while traveling by ship from Palermo to Naples in 1938.
His fate has never been fully resolved and several articles have been written that explore the mystery
itself. His demise intrigues us still today because of his seminal work, published the previous year, that
established symmetric solutions to the Dirac equation that describe a fermionic particle that is its own
antiparticle. This work has long had a significant impact in neutrino physics, where this fundamental
question regarding the particle remains unanswered. But the formalism he developed has found many
uses as there are now a number of candidate spin-1=2 neutral particles that may be truly neutral with
no quantum number to distinguish them from their antiparticles. If such particles exist, they will
influence many areas of nuclear and particle physics. Most notably the process of neutrinoless double
beta decay can exist only if neutrinos are massive Majorana particles. Hence, many efforts to search
for this process are underway. Majorana’s influence does not stop with particle physics, however, even
though that was his original consideration. The equations he derived also arise in solid-state physics
where they describe electronic states in materials with superconducting order. Of special interest here
is the class of solutions of the Majorana equation in one and two spatial dimensions at exactly zero
energy. These Majorana zero modes are endowed with some remarkable physical properties that
may lead to advances in quantum computing and, in fact, there is evidence that they have been
experimentally observed. This Colloquium first summarizes the basics of Majorana’s theory and its
implications. It then provides an overview of the rich experimental programs trying to find a fermion
that is its own antiparticle in nuclear, particle, and solid-state physics.
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I. INTRODUCTION

In the late 1920s Schrödinger published his nonrelativistic
wave equation (Schrödinger, 1926) describing the quantum
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Principal high-energy physics candidate 
for Majorana fermion: neutrino

This is expected to occur in 
certain isotopes, e.g. 76Ge, 
130Te, 138Xe but half-life is 
extremely long ~1025 years!
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Majorana returns
Frank Wilczek

In his short career, Ettore Majorana made several profound contributions. One of them, his concept 
of ‘Majorana fermions’ — particles that are their own antiparticle — is finding ever wider relevance in 
modern physics.

Enrico Fermi had to cajole his friend 
Ettore Majorana into publishing 
his big idea: a modification of the 

Dirac equation that would have profound 
ramifications for particle physics. Shortly 
afterwards, in 1938, Majorana mysteriously 
disappeared, and for 70 years his modified 
equation remained a rather obscure 
footnote in theoretical physics (Box 1). 
Now suddenly, it seems, Majorana’s 
concept is ubiquitous, and his equation 
is central to recent work not only in 
neutrino physics, supersymmetry and dark 
matter, but also on some exotic states of 
ordinary matter.

Majorana fermions
An electrically charged particle is different 
from its antiparticle as it has the opposite 
electric charge, and electric charge is a 
measurable, stable property. It is possible, 
however, for an electrically neutral particle 
to be its own antiparticle. Photons, which 
have spin 1 in units of the rationalized 
Planck’s constant ħ, are a familiar case; 
neutral pions (spin 0) are a further example, 
and gravitons (spin 2) another. Particles 
that are their own antiparticles must be 
created by fields φ that obey φ = φ  — 
that is, real fields, because the complex-
conjugate fields φ  create their antiparticles. 
The equations for particles with spin 0, 
spin 1 and spin 2 — the Klein–Gordon, 
Maxwell (electromagnetism) and 
Einstein (general relativity) equations, 
respectively — readily accommodate real 
fields, as these equations are formulated 
using real numbers.

On the other hand, the neutron (which 
has spin ½), despite being electrically 
neutral, is not its own antiparticle: several 
neutrons can peacefully coexist within 
an atomic nucleus, but an antineutron 
rapidly annihilates. Neither, of course, 
are the most famous spin-½ particles — 
electrons and protons, which are electrically 
charged — their own antiparticles. So it 
is not obvious that we need an equation 
to describe spin-½ particles that are their 
own antiparticles.

Indeed, when, in 1928, Paul Dirac 
discovered1 the theoretical framework 
for describing spin-½ particles, it seemed 
that complex numbers were unavoidable 
(Box 2). Dirac’s original equation contained 
both real and imaginary numbers, and 
therefore it can only pertain to complex 
fields. For Dirac, who was concerned 
with describing electrons, this feature 
posed no problem, and even came to 
seem an advantage because it ‘explained’ 
why positrons, the antiparticles of 
electrons, exist.

Enter Ettore Majorana. In his 1937 
paper2, Majorana posed, and answered, the 
question of whether equations for spin-½ 
fields must necessarily, like Dirac’s original 
equation, involve complex numbers. 
Considerations of mathematical elegance 
and symmetry both motivated and guided 
his investigation. Majorana discovered 
that, to the contrary, there is a simple, 
clever modification of Dirac’s equation 
that involves only real numbers. With 
this discovery, Majorana made the idea 
that spin-½ particles could be their own 
antiparticles theoretically respectable, that 
is, consistent with the general principles 
of relativity and quantum theory. In 
his honour, we call such hypothetical 
particles Majorana fermions. But are there 
physical examples?

Are neutrinos Majorana fermions?
Majorana speculated that his equation 
might apply to neutrinos. In 1937, 
neutrinos were themselves hypothetical, 
and their properties unknown. The 
experimental study of neutrinos 
commenced with their discovery3 in 1956, 
but their observed properties seemed to 
disfavour Majorana’s idea. Specifically, there 
seemed to be a strict distinction between 
neutrinos and antineutrinos.

The distinction is connected with the 
law of lepton-number conservation, which 
applies for each of the leptons — electron 
(e), muon (μ) and tau (τ). For example, 
for electrons, lepton-number conservation 
means that, in any reaction, the total 

number of electrons minus the number of 
antielectrons, plus the number of electron 
neutrinos minus the number of antielectron 
neutrinos is a constant (call it Le). These 
laws lead to many successful selection 
rules. For example, the particles (muon 
neutrinos,  νμ) emitted in positive pion (π) 
decay, π+ → μ+ + νμ, will induce neutron-
to-proton conversion νμ + n → μ− + p, 
but not proton-to-neutron conversion 
νμ + p → μ+ + n; the particles (muon 
antineutrinos, ν̄μ) emitted in the negative 
pion decay π− → μ− + ν̄μ obey the opposite 
pattern. Indeed, it was through studies of 
this kind that the existence of different 
‘flavours’ of neutrino, corresponding 
to the different types of charged lepton 
was discovered4.

Of course, if neutrinos really differ from 
antineutrinos, then they are not Majorana 
fermions. In recent years, however, the 
situation has come to seem less clear-cut, 
for it has been discovered that neutrinos 
oscillate in flavour5. For example, an 
electron antineutrino emitted from the Sun 
can arrive at Earth as a muon antineutrino 
or a tau antineutrino. In some sense this 
is a small effect, but when neutrinos travel 
a long way they have time to do rare 
things. These flavour oscillations show 
that the separate ‘laws’ of lepton-number 
conservation do not hold: at best, only the 
sum Le + Lμ + Lτ can be strictly conserved.

Thus awakened from our dogmatic 
slumber, we re-open Majorana’s question: 
could the distinction between neutrino 
and antineutrino, which seems so plainly 
apparent, be superficial? (Consider the vast 
perceptual disconnect between the morning 
star and the evening star — yet they’re 
both Venus.)

But how can ν = ν̄ be reconciled with 
those many observations that seemed to 
indicate a distinction? The point is that 
the ν particles produced in, for example, 
π+ → μ+ + ν are in a very different state of 
motion from the ν̄ particles produced in 
π− → μ− + ν̄. The former are left handed, 
spinning in the sense that the fingers of your 
left hand point, if your thumb aligns with the 
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velocity, whereas the latter are right handed. 
So, logically, ν and ν̄ and might be the same 
particle, having different behaviours when it 
is in different states of motion.

If you could bring neutrinos and 
antineutrinos to rest, and do experiments 
with them, you could test whether they 
behave the same way. That is impractical, 
unfortunately: theoretically, the cosmos is 
awash with slow neutrinos, but they are too 
hard to detect. Although such a direct test 
of Majorana’s hypothesis seems out of reach 
for now, several ambitious experiments are 
underway to test one of its implications, 
namely, that even the last bastion of 
lepton-number conservation, Le + Lμ + Lτ, 
can be toppled. Searches for neutrino-less 
double β decay, such as Ge76 → Se76 + 2e, 
are launching a promising fusillade6. In 
this decay, total lepton number changes by 
two, so its occurrence would disprove the 
conservation law definitively.

Meanwhile, the leading ideas on 
neutrino masses, rooted in unified field 
theories, predict that neutrinos are 
Majorana fermions7,8. The detailed logic is 
complex, but the basic idea is simple: we 
get more economical, and much prettier, 

equations if we don’t add antineutrinos as 
separate entities to our fundamental theory. 
For if neutrinos in the right-handed state 
of motion are not antineutrinos, they must 
be something else; and that something 
else must (as it’s escaped detection so far) 
interact with the kinds of matter we know 
very feebly indeed. It is hard to fit such 
oddball entities within the most attractive 
unified theories, which require symmetry 
among their building blocks.

Of supersymmetry and dark matter
Neutrinos were Majorana’s own candidates 
for Majorana fermions, and although 
they look more promising than ever in 
that regard, no longer are they unique. 
Other problems at the frontier of 
fundamental physics seem to call for more 
Majorana fermions.

Supersymmetry is a leading proposal 
to improve the symmetry and coherence 
of the equations of physics9. It involves 
the expansion of spacetime into a new, 
quantum dimension. Particles that move 
in that direction change their mass and 
spin. If supersymmetry is valid, then every 
known bosonic (integer spin) particle will 

have a heavier fermionic (half-integer spin) 
partner; and vice versa for each known 
fermion. There is suggestive, although 
circumstantial, evidence for the existence 
of these ‘superpartners’. Specifically, if the 
superpartners exist and are not too heavy, 
then in their evanescent form, as virtual 
particles, they are computed to modify 
(partially screen) the basic units of strong, 
weak and electromagnetic charge so as 
to quantitatively account for the different 
observed charge values — in a unified field 
theory where, fundamentally, those values 
are equal10. In brief, supersymmetry allows 
the unification of the fundamental forces.

If supersymmetry is valid, then the 
photon has as its superpartner a spin-½ 
particle, the photino. As the photino mirrors 
the properties of the photon, it must be 
its own antiparticle. Thus the photino is a 
Majorana fermion. So, for similar reasons, 
are various other superpartners (such as 
neutral gauginos, as well as Higgsinos). In 
a word, supersymmetry comes chock-a-
block with Majorana fermions. If, as widely 
anticipated, superpartners are produced — 
as real, not just virtual, particles — at the 
Large Hadron Collider, we might quickly 

Box 1 | The romance of Ettore Majorana

“There are many categories of scientists: 
people of second and third rank, who do 
their best, but do not go very far; there 
are also people of first-class rank, who 
make great discoveries, fundamental to 
the development of science. But then there 
are the geniuses, like Galileo and Newton. 
Well Ettore Majorana was one of them.” 
Enrico Fermi, not known for flightiness 
or overstatement, is the source of these 
much-quoted lines.

The bare facts of Majorana’s life are 
briefly told. Born in Catania, Italy, on 
5 August 1906, into an accomplished family, 
he rose rapidly through the academic ranks, 
became a friend and scientific collaborator 
of Fermi, Werner Heisenberg and other 
luminaries, and produced a stream of 
high-quality papers. Then, beginning in 
1933, things started to go terribly wrong. 
He complained of gastritis, became 
reclusive, with no official position, and 
published nothing for several years. In 
1937, he allowed Fermi to write-up and 
submit, under his (Majorana’s) name, his 
last and most profound paper — the point 
of departure of this article — containing 
results he had derived some years before. 
At Fermi’s urging, Majorana applied 
for professorships and was awarded the 
Chair in Theoretical Physics at Naples, 

which he took up in January 1938. Two 
months later, he embarked on a mysterious 
trip to Palermo, arrived, then boarded a ship 
straight back to Naples and disappeared 
without a trace.

Majorana published only nine papers 
in his lifetime, none very lengthy. They 
are collected, with commentaries, all in 
both Italian and English versions, in a slim 
volume30. Each is a substantial contribution 
to quantum physics. At least two are 

masterpieces: the last, as mentioned, and 
another on the quantum theory of spins in 
magnetic fields, which anticipates the later 
brilliant development of molecular-beam 
and magnetic resonance techniques.

In recent years, a small industry 
has developed, bringing Majorana’s 
unpublished notebooks into print (see 
for example ref. 31). They are impressive 
documents, full of original calculations 
and expositions covering a wide range 
of physical problems. They leave an 
overwhelming impression of gathering 
strength; physics might have advanced 
more rapidly on several fronts had 
Majorana pulled this material together and 
shared it with the world.

How did he vanish? There are two 
leading theories. According to one, he 
retired to a monastery, to escape a spiritual 
crisis and accept the embrace of his deep 
Catholic faith (not unlike another tortured 
scientific genius, Blaise Pascal). According 
to another, he jumped overboard, an act of 
suicide recalling the alienated supermind 
of fiction, Odd John32. Fermi’s appreciation 
had a wistful conclusion, which is less well 
known: “Majorana had greater gifts than 
anyone else in the world. Unfortunately 
he lacked one quality which other men 
generally have: plain common sense.”
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establish the existence of several Majorana 
fermions, even as the status of neutrinos 
remains uncertain.

A popular hypothesis11 for the 
astronomical dark matter is that it is a 
weakly interacting massive particle, or 
WIMP. Indeed, it could be one of the 
superpartners just mentioned. The overall 
neutrality of Majorana fermions means 
that they can decay, or annihilate in pairs. 
The debris from such events could produce 
energetic cosmic rays, which are the object 
of ongoing search experiments. It is entirely 
possible that WIMPs, dominating the mass 
of the Universe and proclaiming their 
existence with cosmic fireworks, will be the 
first established Majorana fermions.

Majorana modes in the solid state
There is a completely different area of 
physics in which Majorana’s idea is starting 
to receive more attention — theoretical 

solid-state physics. Recent investigations 
suggest that exotic quasiparticle excitations 
in a variety of interesting condensed-matter 
systems are Majorana fermions. Many of 
these ideas were born of high mathematical 
fantasy, but there is a very real chance that 
they may soon mature into a surprisingly 
tangible, and even useful, form.

The concept of excitations that are their 
own antiparticles is not unprecedented 
in solid-state physics. An example is the 
exciton — a quasiparticle formed by bound 
states of electrons and holes. The latter 
are a familiar concept in modern solid-
state physics12, and represent the absence 
of an electron in a mode that is normally 
(in the overall ground state) occupied. In 
rough but more vivid language, holes are 
bubbles of emptiness in the Fermi sea of 
electrons (Fig. 1a). Holes ‘look’ and ‘behave’ 
like the antiparticles or antimatter to 
their corresponding particles, the valence 

electrons; they act as if they were positively 
charged electrons.

The particle–antiparticle correspondence, 
as well as the manifestation of the electron’s 
and hole’s characteristic fermion statistics, is 
transparent in the mathematical formalism 
of second quantization. Here, ‘particle 
states’ are associated with creation operators 
cj

†, antiparticle (hole) states with their 
conjugate operators, cj. In essence, cj can 
create a hole, or destroy a particle, in state j, 
whereas cj

† can create a particle, or destroy a 
hole in state j. Three key relations embody 
the characteristics of Fermi–Dirac statistics 
and describe the relationship between 
particle and hole operators associated with 
different states. First,

 (c†)   = c2 = 0j j
2

which means that the attempt to cram two 
electrons, or two holes, into the same state 

Box 2 | The Majorana equation

In 1928, Dirac proposed his relativistic 
wave equation for electrons33. This 
was a watershed event in theoretical 
physics, leading to a new understanding 
of spin, predicting the existence of 
antimatter, and impelling — for its 
adequate interpretation — the creation of 
quantum field theory. It also inaugurated 
a new method in theoretical physics, 
emphasizing mathematical aesthetics as 
a source of inspiration. Majorana’s most 
influential work is especially poetic, in 
that it applies Dirac’s method to Dirac’s 
equation itself, to distill from it an 
equation both elegant and new. For many 
years, Majorana’s idea seemed to be an 
ingenious but unfulfilled speculation. 
Recently, however, it has come into its 
own, and now occupies a central place 
in several of the most vibrant frontiers of 
modern physics.

Dirac’s equation connects the four 
components of a field ψ. In modern 
(covariant) notation it reads

(iγμ∂μ − m)ψ = 0

The γ matrices are required to obey the 
rules of Clifford algebra, that is

{γμγυ}  γμγυ + γυγμ = 2ημυ

where ημυ is the metric tensor of flat space. 
Spelling it out, we have

(γ0)2 = −(γ1)2 = −(γ2)2 = −(γ3)2 = 1
γjγk = −γkγj for i ≠ j

(in which I have adopted units such that 
ħ = c = 1). Furthermore, we require that γ0 be 
Hermitian, and the remaining marices anti-
Hermitian. These conditions ensure that the 
equation properly describes the wavefunction 
of a spin-½ particle with mass m.

Dirac found a suitable set of 4 × 4 
γ matrices, whose entries contain both real 
and imaginary numbers. For the equation to 
make sense, ψ must then be a complex field. 
Dirac and most other physicists regarded 
this consequence as a good feature, because 
electrons are electrically charged, and the 
description of charged particles requires 
complex fields, even at the level of the 
Schrödinger equation. This is also true in the 
language of quantum field theory. In quantum 
field theory, if a given field φ creates the 
particle A (and destroys its antiparticle Ā), the 
complex conjugate φ  will create Ā and destroy 
A. Particles that are their own antiparticles 
must be associated with fields obeying φ = φ , 
that is, real fields. Because electrons and 
positrons are distinct, the associated fields ψ 
and ψ  and must therefore be different; this 
feature appeared naturally in Dirac’s equation.

Majorana inquired whether it might 
be possible for a spin-½ particle to be its 
own antiparticle, by attempting to find the 
equation that such an object would satisfy. 
To get an equation of Dirac’s type (that is, 
suitable for spin-½) but capable of governing 
a real field, requires γ matrices that satisfy 
the Clifford algebra and are purely imaginary. 
Majorana found such matrices. Written as 
tensor products of the usual Pauli matrices σ, 
they take the form:

 γ̃0 = σ2  σ1
 γ̃1 = iσ1  1
 γ̃2 = iσ3  1
 γ̃3 = iσ2  σ2

or alternatively, as ordinary matrices:

0

1

2

3

0 0

0 0
0 0 0

0 0

0
0

0

0 00
0 0 0
0 0
0
0 0 0

00 0

0 0
0

0 0
0

0
00 0

0

0
0 0 0

0 0
0

0 0 0

=

=

=

=

Majorana’s equation, then, is simply

(iγ̃μ∂μ – m)ψ̃ = 0)

Because the γ̃μ matrices are purely 
imaginary, the matrices iγ̃μ are real, and 
consequently this equation can govern a 
real field ψ̃.
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Non-Abelian states of matter
Ady Stern1

Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification 
is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. 
In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of 
quasiparticles that break the fermion–boson dichotomy. A particularly interesting alternative is offered by 
‘non-Abelian’ states of matter, in which the presence of quasiparticles makes the ground state degenerate, 
and interchanges of identical quasiparticles shift the system between different ground states. Present 
experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum 
Hall effect. If such states can be identified, they may become useful for quantum computation.

Electrons are fermions; photons are bosons. Although seemingly a 
mundane statement about the symmetries of a quantum mechani-
cal wavefunction when two identical particles are interchanged (for 
instance with respect to degrees of freedom such as position or momen-
tum), this statement is in fact a pillar of the understanding of nature, 
and a basis of the understanding of the periodic table and the existence 
of metals, to list just two examples. Such quantum statistical consid-
erations also affect the behaviour of composites of quantum particles: 
helium-4 atoms are bosons and form superfluids at low temperatures; 
and pairs of electrons are effectively bosons, which is how Cooper pairs 
of electrons make the phenomenon of superconductivity possible.

Non-Abelian systems1,2 contain composite particles that are neither 
fermions nor bosons and have a quantum statistics that is far richer than 
that offered by the fermion–boson dichotomy. The presence of such 
quasiparticles manifests itself in two remarkable ways. First, it leads to 
a degeneracy of the ground state that is not based on simple symmetry 
considerations and is robust against perturbations and interactions with 
the environment. Second, an interchange of two quasiparticles does not 
merely multiply the wavefunction by a sign, as is the case for fermi-
ons and bosons. Rather, it takes the system from one ground state to 
another. If a series of interchanges is made, the final state of the system 
will depend on the order in which these interchanges are being carried 
out, in sharp contrast to what happens when similar operations are per-
formed on identical fermions or bosons. It is this ‘ordering’ dependence 
that justifies the name ‘non-Abelian’ (‘non-commutative’ in mathemati-
cal terms). Just as the minus sign that accompanies the interchange of 
two fermions is independent of details such as their interaction or envi-
ronment, the effect of the interchange of two non-Abelian quasiparticles 
is insensitive to noise from the environment around them.

Non-Abelian states have generated great interest recently1–5, for three 
main reasons. The first is the theory behind them. Understanding of 
their origin and properties is in its infancy. The second is the challenge to 
observe them in an experiment. There are some systems in which strong 
theoretical arguments suggest the existence of non-Abelian quasiparti-
cles, and that motivates a search for their experimental discovery. Third, if 
non-Abelian states were shown to exist in realizable systems, they would 
be ideal candidates for constructing topological quantum computers6–8. 
A quantum computer needs a set of quantum states that is well separated 
from the rest of the world. The degenerate ground states of a non-Abelian 
system, separated by an energy gap from the rest of the spectrum, deliver 
that. Furthermore, a quantum computer needs a minimum sensitivity 

to noise and decoherence, and this requirement is amply satisfied by the 
insensitivity of the effect of interchange of non-Abelian quasiparticles to 
noise and perturbations. The topological aspects of these interchanges 
motivate the name ‘topological quantum computation’.

There are real-life settings in which existing theory predicts 
non-Abelian states of matter to exist, but they are not numerous2. Sys-
tems that manifest the fractional quantum Hall effect are believed to 
have a series of states that are non-Abelian9–27. Closely related states may 
be realized in cold atoms28,29, superconductors of p-wave pairing symme-
try2 and hybrid systems of superconductors with so-called topological 
insulators30–32 (see page 194) and/or semiconductors33. Non-Abelian 
lattice spin models have been proposed19 but are far from experimental 
realization. Among all of these, the most prominently studied candidate 
for an experimentally accessible non-Abelian state is the ν = ⁄ quantum 
Hall state9–27.

In this Review, I discuss the properties of non-Abelian states, the systems 
in which they are expected to emerge, the possible ways of identifying them 
and the status of the experimental attempts to find them. I focus mainly 
on the ν = ⁄ quantum Hall state but also touch on hybrid systems that 
combine the effects of spin–orbit interaction with superconductivity.

Non-Abelian quasiparticles
Non-Abelian quasiparticles appeared on the quantum mechanical stage 
after several decades of engagement with the quantum mechanics of 
identical particles. The originators of quantum mechanics distinguished 
fermions from bosons through the symmetry restrictions imposed 
on their many-body wavefunctions. A wavefunction, Ψ(r1, …, rN), of 
N identical spin-polarized particles whose coordinates are r1, …, rN must 
be odd under the interchange of the positions of two of the particles if 
they are fermions, and even if they are bosons.

In the past three decades, it has been realized that in two spatial dimen-
sions the statistics of quasiparticles formed as composites of the elemen-
tary particles of a system is not limited to the fermion–boson dichotomy. 
As a first break from that dichotomy, the interchange of two quasiparticles 
may multiply the wavefunction by a phase. That phase may take any value 
and, as a consequence, the quasiparticles are known as ‘anyons’.

The second break from the fermion–boson dichotomy, embodied 
by so-called non-Abelian quasiparticles, is much more surprising: an 
interchange of two quasiparticles does not merely multiply the ground-
state wavefunction by a phase factor; rather, it shifts the system to a 
different ground state.
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Majorana’s wires
Marcel Franz

Experiments on nanowires have shown evidence of solid-state analogues of the particles predicted by 
Ettore Majorana more than 70 years ago. Although stronger confirmation is still to come, these first 
observations have already fuelled expectations of fundamental results and potential applications in 
quantum information technology.

When in 1937 Ettore Majorana 
discovered a purely real-valued 
solution1 to the celebrated Dirac 

equation, he could not have foreseen 
the whirlwind of activity that would 
follow — some 70 years later — and not 
in particle physics, which was his domain, 
but in nanoscience and condensed-matter 
physics. Majorana fermions, as the particles 
described by these solutions became 
known, are curious objects. The recent 
storm of activity in condensed-matter 
physics has focused on the ‘Majorana 
zero modes’, that is, emergent Majorana 
particles occurring at exactly zero energy 
that have a remarkable property of being 
their own antiparticles2,3. Mathematically, 
this property is expressed as an equality 
between the particle’s creation and 
annihilation operators γ† = γ. Any ordinary 
fermion can be thought of as being 
composed of two Majorana fermions. An 
interesting situation arises when a single 
Majorana particle can be spatially separated 
from its partner and independently probed. 
Observation of such an ‘unpaired’ Majorana 
particle in a solid-state system would 
clearly fulfil a longstanding intellectual 
challenge. Furthermore, Majorana zero 
modes are believed to exhibit the so called 
non-Abelian exchange statistics4,5, which 
endows them with a technological potential 
as building blocks of future quantum 
memory immune against many sources 
of decoherence that plague other such 
proposed devices.

Recent advances in our understanding 
of solids with strong spin–orbit 
coupling, combined with the progress 
in nanofabrication, put the physical 
realization of the Majorana particles within 
reach. In fact, signatures consistent with 
their existence in quantum wires coupled 
to conventional superconductors in a 
set-up schematically depicted in Fig. 1 
have been reported by several groups6–10. 
The theory behind these devices is very 

well understood — it is rooted in the 
standard band theory of solids and the 
Bardeen–Cooper–Schrieffer theory of 
superconductivity — and there is no 
doubt that Majorana zero modes should 
appear under the right conditions. The key 
question that remains to be answered is: 
Have the right conditions been achieved in 
existing devices?

Why wires?
Historically, there has been a number of 
proposals to engineer and detect Majorana 
zero modes in two-dimensional (2D) 
solid-state systems, including the fractional 
quantum Hall liquids11, interacting quantum 
spin systems12, spin-polarized p-wave 
superconductors13, and more recently 
interfaces between topological insulators14 
or semiconductors15,16 and ordinary 

superconductors. Despite significant 
progress, especially in the quantum Hall 
liquids, none of these proposals has seen a 
decisive experimental confirmation. Instead, 
the focus over the past two years has shifted 
to 1D structures — quantum wires — that 
are thought to possess several distinct 
advantages when it comes to fabrication and 
subsequent detection of the Majorana zero 
modes. In quantum wires Majoranas occur 
either at the wire end or at a domain wall 
between topological and non-topological 
regions of the wire. This facilitates relatively 
easy detection compared with 2D systems 
where Majoranas are in the cores of 
magnetic vortices or other topological 
defects, which can be located essentially 
anywhere in the sample and are thus difficult 
to find. The second key advantage is the 
expected paucity, relative to the 2D systems, 

Gates

Superconductor

Metal

BNanowire

Figure 1 | A typical experimental set-up for the Majorana zero mode detection in a nanowire. The 
nanowire is placed on a substrate equipped with gates and contacted from above by superconducting 
and normal metal electrodes. The red arrows indicate the applied magnetic field B. 
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The race for realizing Majorana fermions—elusive particles that act as their own antiparticles—heats up, but

we still await ideal materials to work with.
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In quantum theory, spin-1/2 particles, like electrons,
are described by complex-valued solutions of the cel-
ebrated Dirac equation. In a seminal 1937 paper Et-
tore Majorana [1], guided by principles of simplicity and
mathematical elegance, proposed a modification to the
Dirac equation describing a spin-1/2 particle that would
admit purely real (as opposed to complex-valued) solu-
tions. Such real solutions have become known as Majo-
rana fermions and describe a class of particles that are,
curiously, their own antiparticles (more on this below).
There are compelling theoretical reasons to believe that
neutrinos are Majorana fermions but a convincing ex-
perimental proof is yet to be given [2]. Over the past
decade Majorana fermions have been increasingly stud-
ied in condensed matter physics where they can appear
as emergent degrees of freedom in certain systems of in-
teracting electrons. This means that at low energies the
system behaves as if composed of Majorana fermions
and not the constituent electrons. In this context, the
interest in Majorana fermions stems from their exotic
properties (such as the non-Abelian exchange statis-
tics) that could find uses in future applications to fault-
tolerant quantum information processing. Jason Alicea
of the California Institute of Technology, US, in a paper
in Physical Review B[3], describes the most recent and
by some measures perhaps the most promising of the
proposals to realize and control Majorana fermions in a
solid-state system.

Majorana fermions are more easily understood in the
“second quantized” notation. Ordinary fermions, such
as electrons or protons, are described by creation and
annihilation operators: c

†
j

creates a fermion in a quan-
tum state j while c

j

annihilates it (or, equivalently, cre-
ates the corresponding antiparticle). Their Fermi-Dirac
statistics is encoded in the canonical commutation rela-
tions {c

†
i

, c

†
j

} = {c

i

, c

j

} = 0 and {c

†
i

, c

i

} = 1, where
curly brackets denote anticommutator. The key prop-

erty of ordinary fermions is that, evidently, c

†
i

6= c

i

, i.e.,
particles and antiparticles are physically distinct.

Now imagine that for some reason it becomes more
natural to describe the system at hand not in terms
of the fundamental constituent fermions c

j

but instead
in terms of new emergent particles related to them as
g

j1 = (c

†
j

+ c

j

)/2 and g
j2 = (c

†
j

� c

j

)/2i. These g-
particles obey the same fermonic commutation relations
but, crucially, it now holds that g†

ja = g
ja, i.e., the parti-

cle acts as its own antiparticle! Thus g†
ja is a creation op-

erator of a Majorana fermion. Formally, it is always pos-
sible to cast the theory of an arbitrary system containing,
say, electrons, in terms of Majorana fermions using the
above transformation. In the vast majority of cases such
a manipulation does not provide any benefit. There are
systems, however, in which such a description—and no
other—is required to capture the underlying physics.

If neutrinos are Majorana particles then, clearly, the
construction outlined above applies to them. In con-
densed matter physics, Majorana fermions appear as el-
ementary excitations in theories describing certain frac-
tional quantum Hall states [4], interacting quantum
spins [5], and exotic superconductors [6]. The proposal
by Alicea [3] builds upon and improves some of the re-
cent proposals [7, 8] for realization of Majorana fermions
in superconductors.

How do superconductors give rise to Majorana
fermions? Those familiar with the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductivity will recog-
nize that combinations of electron creation and annihi-
lation operators similar to those that define g particles
also enter the microscopic description of superconduc-
tors. Physically, such mixing of the particle and hole
degrees of freedom underlies the pairing phenomenon
fundamental to the BCS theory. Thus it is perhaps not
surprising that Majoranas emerge in this context. How-
ever, it takes a very special superconductor to realize a
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Majorana fermions  vs.  Majorana zero modes  
(for experts)

• neutrinos in particle physics (?)

• electrons in superconductors

• special case of Majorana fermion of interest in CM physics

• occur as zero-energy excitations in 1D and 2D topological SC

• obey non-Abelian exchange statistics



Majorana fermions in solid-state 
systems

• Majorana fermions - particles that are identical to 
their antiparticles

•  Can occur as collective excitations in solids with 
unconventional superconducting order.

• Majorana zero modes: Obey non-abelian exchange 
statistics and can serve as a platform for fault-tolerant 
quantum computation.
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FIG. 2: Two phases of the Kitaev chain. Trivial phase (top)
has Majorana fermions (blue spheres) bound in pairs located
on the same site of the physical lattice, represented by translu-
cent spheres. In the topological phase (bottom) Majorana
femions are bound in pairs located on the neighboring sites
leading to two unpaired Majoranas at both ends, represented
by the red spheres.

sites of a 1D tight-binding chain and subject to supercon-
ducting pairing with p-wave symmetry (i.e. on the bonds
connecting the neighboring sites). Kitaev observed that
depending on the model parameters, the hopping ampli-
tude t and the SC pairing amplitude �, the system can
be in two distinct phases. If we think of the fermions on
each lattice site as composed of two Majorana fermions,
cj = �j1 + i�j2, then the trivial phase can be depicted as
in the top panel of Fig. 2, and has Majoranas bound into
ordinary fermions on each site. In the other phase, Ma-
joranas on the neighboring sites bind to form a regular
fermion, leaving an unpaired Majorana at each end of the
chain as illustrated in the bottom panel of Fig. 2. This
is the topological SC phase that underlies all the recent
proposals to engineer Majorana fermions in 1D devices.

II. PHYSICAL REALIZATIONS OF THE
KITAEV CHAIN

There exist two basic realizations of the Kitaev chain.
One is based on quantum wires made of a semiconductor
with strong spin-orbit coupling such as InSb or InAs and
the other employs wires made of a 3D topological insula-
tor (TI) such as Bi2Se3. In both cases superconductivity
in the wire must be induced via the proximity e⇤ect in a
setup schematically depicted in Fig. 1. Magnetic field is
used to produce e⇤ectively spinless electrons in the wires
as required by the Kitaev paradigm.

We discuss first the semiconductor wire implementa-
tion [19, 20] that has attracted by far the most attention
over the past two years. The well known excitation spec-
trum of such a wire is illustrated in Fig. 3a: the Rashba
spin-orbit coupling separates the parabolic bands for two
spin projections and the Zeeman field opens up a gap
VZ = gB near k = 0 leading to an e⇤ectively spinless 1D
metal when the chemical potential µ lies in the Zeeman
gap. This is the key condition that must be met in order
to realize a 1D topological superconductor; more gener-
ally one requires an odd number of Fermi points in the
right half of the Brillouin zone [18]. Superconducting or-
der in such a wire gives rise to the topological phase when

the following condition on the superconducting gap mag-
nitude � is satisfied: VZ >

p
�2 + µ2. In this regime the

semiconductor wire realizes the Kitaev chain paradigm
and will have Majorana zero modes localized at its ends.

The condition on VZ , � and µ listed above imposes
some considerable constraints on the physical realization
of the topological phase [21]. For typical values of the
magnetic g-factor (15 and 50 for InAs and InSb wires,
respectively) and for the magnetic fields of few Tesla one
obtains VZ ' 1 � 10K. Tuning the chemical potential µ
with this accuracy and ensuring that it is also su⌃ciently
homogeneous so that the condition is satisfied everywhere
along the length of the wire represents a significant ex-
perimental challenge. Also, the smallness of VZ restricts
the experimental window for Majorana fermion observa-
tion and manipulation to low temperatures T ⌧ VZ . Yet,
several groups have reported signatures in wires consis-
tent with the existence of Majorana zero modes [6–11].
If true, this is a remarkable achievement, although as
we discuss below there exist alternative interpretations
of these experiments that do not involve Majorana zero
modes.

The above mentioned constraint is relaxed in quan-
tum wires made of a 3D topological insulator [22, 23].
The underlying physics here is quite di⇤erent and relies
on the topologically protected surface states that are the
halmark of these remarkable materials [24, 25]. It is easy
to show by an explicit calculation [26] that the spectrum
of such surface states in a wire whose cross-section is
threaded by magnetic flux (n + 1

2 )⇥0, with n an inte-
ger and ⇥0 = hc/e the magnetic flux quantum, has the
form illustrated in Fig. 3b. It consists of a pair of non-
degenerate linearly dispersing gapless modes and a set of
doubly degenerate gapped modes. The important prop-
erty of this spectrum is that the number of Fermi points
in the right half of the Brillouin zone is odd for any value
of the chemical potential as long as it lies inside the bulk
bandgap, which is ⇠ 300meV in Bi2Se3 family of materi-
als. Thus, such a wire conforms to Kitaev’s paradigm and
will exhibit Majorana zero modes when superconducting
order is induced in it by the proximity e⇤ect [22]. In addi-
tion, unlike in the semiconductor wires, superconducting
order in this setup is expected to be robust against the
e⇤ects of non-magnetic disorder [23].

As of this writing the existence of coherent surface
states in TI wires has been established [27] and the su-
perconducting proximity e⇤ect has been demonstrated
[28]. However, signatures of Majorana zero modes have
not yet been reported. The key di⌃culty appears to lie
in the fact that as in most bulk TIs the chemical poten-
tial in the wires is pinned in the conduction band thus
obscuring the universal physics of the surface modes.

III. MAJORANA OR NOT?

The easiest way to experimentally observe the Ma-
jorana zero modes in wires is through the tunnelling



• Proposed realizations: 

a. Moore-Read FQHE  

b. Spin-polarized p+ip superconductor

c. TI/SC interface

d. Rashba-coupled semicond. + SC + magnetic insulator

e. 1D quantum wires
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implementation of the ideas introduced here would constitute
a critical step towards this ultimate goal.

I. MAJORANA FERMIONS IN ‘SPINLESS’ p-WAVE
SUPERCONDUCTING WIRES

We begin by discussing the physics of a single wire. Valu-
able intuition can be garnered from Kitaev’s toy model for a
spinless, p-wave superconducting N -site chain23:

H = �µ
N⇧

x=1

c†xcx �
N�1⇧

x=1

(tc†xcx+1 + |�|ei⇥cxcx+1 + h.c.)

(1)
where cx is a spinless fermion operator and µ, t > 0, and
|�|ei⇥ respectively denote the chemical potential, tunneling
strength, and pairing potential. The bulk- and end-state struc-
ture becomes particularly transparent in the special case23

µ = 0, t = |�|. Here it is useful to express

cx =
1
2
e�i �

2 (⇥B,x + i⇥A,x), (2)

with ⇥�,x = ⇥†
�,x Majorana fermion operators satisfying

{⇥�,x, ⇥��,x�} = 2⇤���⇤xx� . These expressions expose the
defining characteristics of Majorana fermions—they are their
own antiparticle and constitute ‘half’ of an ordinary fermion.
In this limit the Hamiltonian can be written as

H = �it
N�1⇧

x=1

⇥B,x⇥A,x+1. (3)

Consequently, ⇥B,x and ⇥A,x+1 combine to form an ordi-
nary fermion dx = (⇥A,x+1 + i⇥B,x)/2 which costs en-
ergy 2t, reflecting the wire’s bulk gap. Conspicuously ab-
sent from H , however, are ⇥A,1 and ⇥B,N , which represent
end-Majorana modes. These can be combined into an ordi-
nary (though highly non-local) zero-energy fermion dend =
(⇥A,1 + i⇥B,N )/2. Thus there are two degenerate ground
states |0⌅ and |1⌅ = d†end|0⌅, where dend|0⌅ = 0, which serve
as topologically protected qubit states. Figure 1(a) illustrates
this physics pictorially.

Away from this special limit the Majorana end states no
longer retain this simple form, but survive provided the bulk
gap remains finite23. This occurs when |µ| < 2t, where a
partially filled band pairs. The bulk gap closes when |µ| = 2t,
and for larger |µ| a topologically trivial superconducting state
without end Majoranas emerges. Here pairing occurs in either
a fully occupied or vacant band.

Realizing Kitaev’s topological superconducting state exper-
imentally requires a system which is effectively spinless—
i.e., exhibits one set of Fermi points—and p-wave pairs at the
Fermi energy. Both criteria can be satisfied in a spin-orbit-
coupled semiconducting wire deposited on an s-wave super-
conductor by applying a magnetic field1,2 [see Fig. 1(b)]. The

s-wave superconductor

semiconducting wire

!

!

"
#

FIG. 1: (a) Pictorial representation of the ground state of Eq. (1) in
the limit µ = 0, t = |�|. Each spinless fermion in the chain is
decomposed in terms of two Majorana fermions �A,x and �B,x. Ma-
joranas �B,x and �A,x+1 combine to form an ordinary, finite energy
fermion, leaving two zero-energy end Majoranas �A,1 and �B,N as
shown23. (b) A spin-orbit-coupled semiconducting wire deposited on
an s-wave superconductor can be driven into a topological supercon-
ducting state exhibiting such end Majorana modes by applying an
external magnetic field1,2. (c) Band structure of the semiconducting
wire when B = 0 (dashed lines) and B �= 0 (solid lines). When µ
lies in the band gap generated by the field, pairing inherited from the
proximate superconductor drives the wire into the topological state.

simplest Hamiltonian describing such a wire reads

H =
⌃

dx

⇤
⇧†

x

�
� ~2⌃2

x

2m
� µ� i~uê · �⌃x

� gµBBz

2
⌅z

⇥
⇧x + (|�|ei⇤⇧⇤x⇧⇥x + h.c.)

⌅
. (4)

The operator ⇧�x corresponds to electrons with spin �, effec-
tive mass m, and chemical potential µ. (We suppress the spin
indices except in the pairing term.) In the third term, u denotes
the (Dresselhaus31 and/or Rashba32) spin-orbit strength, and
� = (⌅x, ⌅y, ⌅z) is a vector of Pauli matrices. This coupling
favors aligning spins along or against the unit vector ê, which
we assume lies in the (x, y) plane. The fourth term represents
the Zeeman coupling due to the magnetic field Bz < 0. Note
that spin-orbit enhancement can lead to33 g ⇥ 2. Finally, the
last term reflects the spin-singlet pairing inherited from the
s-wave superconductor via the proximity effect.

To understand the physics of Eq. (4), consider first Bz =
� = 0. The dashed lines in Fig. 1(c) illustrate the band
structure here—clearly no ‘spinless’ regime is possible. In-
troducing a magnetic field generates a band gap ⇤ |Bz| at
zero momentum as the solid line in Fig. 1(c) depicts. When
µ lies inside of this gap the system exhibits only a single pair
of Fermi points as desired. Turning on � which is weak com-
pared to the gap then effectively p-wave pairs fermions in the
lower band with momentum k and �k, driving the wire into
Kitaev’s topological phase1,2. [Singlet pairing in Eq. (4) gen-
erates p-wave pairing because spin-orbit coupling favors op-
posite spins for k and �k states in the lower band.] Quan-
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Ordinary fermions {c†i , cj} = �ij

{�i�, �j⇥} = ⇥ij⇥�⇥ , �†
i� = �i�

cj = (�j1 + i�j2)/2Write in terms of 
Majorana fermions:

Canonical transformation: can be used to recast ANY 
fermionic Hamiltonian in terms of Majorana operators

Majorana fermions

in the solid state context



Certain Hamiltonians can support solutions 
with isolated localized Majorana fermions 

Example: `Kitaev 1D model’

�j1 �j2

cj

cj

isolated, unpaired Majoranas
These also encode one complex fermion but in a way that is 
robust to any local perturbation --> ideal quantum bit.

[Phys. Usp. 44, 131 (2001)]



Kitaev model details:

cj = (�j1 + i�j2)/2Transform to Majorana basis

H =
�

j

�
�t(c†jcj+1 + h.c.) + (�c†jc

†
j+1 + h.c.)

�

H =
i

2

�

j

[(t + �)�j2�j+1,1 + (�t + �)�j1�j+1,2]

Focus on a special point t = �

H = it
N�1�

j=1

�j2�j+1,1

missing!�1,1 and �N,2

7

spinless fermions. Henceforth we shall assume for the
sake of simplicity that � is real and consider a chain with
N sites and open boundary conditions. Using transfor-
mation (9) we can rewrite this Hamiltonian in the Majo-
rana basis,

H =
i

2

⇧

j

⇤
�µ�j1�j2 + (t + �)�j2�j+1,1 (30)

+ (�t + �)�j1�j+1,2

⌅
.

At this point it is useful to examine two specific limits.
First, consider the case � = t = 0. The Hamiltonian
becomes simply

H =
i

2
(�µ)

⇧

j

�j1�j2 = �µ
⇧

j

(c†jcj �
1
2
). (31)

The ground state consists of all electron states either oc-
cupied (µ > 0) or empty (µ < 0) and this is clearly
a topologically trivial phase. Second, consider the case
� = t and µ = 0. Now the Hamiltonian takes the form

H = it
N�1⇧

j=1

�j2�j+1,1. (32)

The ground state of this Hamiltonian is easily found by
defining a new set of fermionic operators

aj =
1
2
(�j2 + i�j+1,1), a†j =

1
2
(�j2 � i�j+1,1), (33)

for j = 1, 2...N�1. These live on nearest neighbor bonds
of our 1D chain as illustrated in Fig. 3b. In terms of these
new fermions we have

H = 2t
N�1⇧

j=1

(a†jaj �
1
2
), (34)

and the ground state for t > 0 is simply an aj vacuum
with total energy Eg = �t(L � 1). The remarkable
thing is that Hamiltonian (32) does not contain oper-
ators �1,1 and �N,2. These represent zero-energy Majo-
rana fermions localized at the ends of the chain. Together
they encode one fermion which is fundamentally delocal-
ized between the two ends of the chain. We remark that
similar considerations yield unpaired Majorana fermions
also for the special case � = �t and µ = 0.

The two special cases considered above represent two
distinct phases of the Kitaev model: the trivial phase and
the topological phase with unpaired Majorana fermions
localized at its ends. To show that these indeed corre-
spond to stable phases consider the same Hamiltonian
(29) but now with periodic boundary conditions. In mo-
mentum space it can be written as

H =
⇧

q

�
(�2t cos q � µ)c†qcq + �(i sin q cqc�q + h.c.

⇥
,

(35)

c) µ

2t

b)

a)

TSCTSC

FIG. 3 Two phases of the Kitaev chain. a) In the trivial
phase Majorana fermions on each lattice site can be thought
of as bound into ordinary fermions. b) In the topological
phase Majoranas on neighboring sites are bound leaving two
unpaired Majorana fermions at the ends of the chain. c) The
phase diagram of the Kitaev chain in the µ–2t plane, showing
the topological phase (TSC) and the normal phase. The blue
and the red dot mark the special points in the parameter
space considered in the text.

and has an excitation spectrum of the form

E(q) = ±
⌃

(2t cos q + µ)2 + (� sin q)2. (36)

If we now focus on the superconducting phases (i.e.
� ⇤= 0) then it is easy to see that the excitation spectrum
Eq. (36) remains fully gapped except when 2t = ±µ.
This condition defines two lines, indicated in Fig. 3,
which mark the phase boundaries between the two stable
phases of the model. (We are making use of the general
principle of adiabatic continuity which states that two
gapped phases are identical if they can be smoothly de-
formed into one another without closing the excitation
gap.) We identify the region |2t| > |µ| as the topologi-
cal phase since the second special point considered above
lies within this phase. The other phase is topologically
trivial.

Since the two phases have the same physical symme-
tries the transition between them is a special type of a
phase transition called topological phase transition. The
two phases are distinguished by the presence or absence
of unpaired Majorana fermions at the ends in the ge-
ometry with open boundary conditions. The question
that naturally arises and that will have important con-
sequences in our search for topological phases in realis-
tic systems is the following. In the absence of symme-
try distinction is it possible to distinguish the topolog-
ical phase from the trivial phase by studying the bulk
of the system? The answer is a⌅rmative: such phases
can be distinguished by means of topological invariants.
Among the better known topological invariants are the
Chern number, allowing one to di⇥erentiate between dif-
ferent quantum Hall phases in two-dimensional quantum

�1,1 �N,2
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Figure 1 |Majorana fermions appear at the ends of a 1D ‘spinless’ p-wave
superconductor, which can be experimentally realized in semiconducting
wires21,22. a, Pictorial representation of the ground state of equation (1) in
the limit µ=0, t= |⌥|. Each spinless fermion in the chain is decomposed in
terms of two Majorana fermions ⇥A,x and ⇥B,x. Majoranas ⇥B,x and ⇥A,x+1

combine to form an ordinary, finite-energy fermion, leaving two zero-energy
end Majoranas ⇥A,1 and ⇥B,N as shown23. b, A spin–orbit-coupled
semiconducting wire deposited on an s-wave superconductor can be driven
into a topological superconducting state exhibiting such end Majorana
modes by applying an external magnetic field21,22. c, Band structure of the
semiconducting wire when B=0 (dashed lines) and B  =0 (solid lines).
When µ lies in the band gap generated by the field, pairing inherited from
the proximate superconductor drives the wire into the topological state.

characteristics of Majorana fermions—they are their own
antiparticle and constitute ‘half’ of an ordinary fermion. In this
limit the Hamiltonian becomes

H = �it
N �1�

x=1

⇥B,x⇥A,x+1

Consequently, ⇥B,x and ⇥A,x+1 combine to form an ordinary fermion
dx = (⇥A,x+1 + i⇥B,x)/2, which costs energy 2t , reflecting the wire’s
bulk gap. Conspicuously absent fromH , however, are ⇥A,1 and ⇥B,N ,
which represent end-Majorana modes. These can be combined into
an ordinary (although highly non-local) zero-energy fermion dend =
(⇥A,1+ i⇥B,N )/2. Thus there are two degenerate ground states which
serve as topologically protected qubit states: |0� and |1� = dend†|0�,
where dend|0� =0. Figure 1a illustrates this physics pictorially.

Away from this limit the Majorana end states no longer retain
this simple form, but survive provided the bulk gap remains finite23.
This occurs when |µ| < 2t , where a partially filled band pairs. The
bulk gap closes when |µ| = 2t . For larger |µ|, pairing occurs in a
fully occupied or vacant band, and a trivial superconducting state
without Majoranas emerges.

Realizing Kitaev’s topological superconducting state experimen-
tally requires a ‘spinless’ system (that is, with one pair of Fermi
points) that p-wave pairs at the Fermi energy. Both criteria can
be satisfied in a spin–orbit-coupled semiconducting wire deposited
on an s-wave superconductor by applying a magnetic field21,22 (see
Fig. 1b). The simplestHamiltonian describing such awire reads

H =
 

dx
⌃
⇧x

†

⌅
� h̄2�x 2

2m
� µ � ih̄uê ·��x

� gµBBz

2
⌅ z
⇧

⇧x + (|⌥|ei⌃⇧⌥x⇧⌃x +h.c .)
⌥

(3)

The operator ⇧�x corresponds to electrons with spin �, effective
mass m, and chemical potential µ. (We suppress the spin indices
except in the pairing term.) In the third term, u denotes the
spin–orbit31,32 strength, and � = (⌅ x ,⌅ y ,⌅ z) is a vector of Pauli

matrices. This coupling favours aligning spins along or against the
unit vector ê, which we assume lies in the (x,y) plane. The fourth
term represents the Zeeman coupling due to the magnetic field
Bz < 0. Note that spin–orbit enhancement can lead33 to g ⇧ 2.
Finally, the last term reflects the spin-singlet pairing inherited from
the superconductor bymeans of the proximity effect.

To understand the physics of equation (3), consider first
Bz = ⌥ = 0. The dashed lines in Fig. 1c illustrate the band
structure here—clearly no ‘spinless’ regime is possible. Introducing
a magnetic field generates a band gap �|Bz | at zero momentum, as
the solid line in Fig. 1c depicts. When µ lies in this gap the system
exhibits a single pair of Fermi points as desired. Turning on ⌥
weakly compared to the gap then effectively p-wave pairs fermions
in the lower band with momentum k and �k, driving the wire
into Kitaev’s topological phase21,22. (Singlet pairing in equation (3)
generates p-wave pairing because spin–orbit coupling favours
opposite spins for k and �k states.) Quantitatively, realizing the
topological phase requires21,22 |⌥|< gµB|Bz |/2, which we hereafter
assume holds. The opposite limit |⌥| > gµB|Bz |/2 effectively
violates the ‘spinless’ criterion because pairing strongly intermixes
states from the upper band, producing an ordinary superconductor
without Majorana modes.

In the topological phase, the connection to equation (1) becomes
more explicit when gµB|Bz | ⇧ mu2, |⌥| where the spins nearly
polarize. One can then project equation (3) onto a simpler one-
band problem by writing ⇧⌃x ⇤ (u(ey + iex)/gµB|Bz |)�x�x and
⇧⌥x ⇤ �x , with �x the lower-band fermion operator. To leading
order, one obtains

Heff ⇤
 

dx
⌃
�x

†

⌅
� h̄2�x 2

2m
� µeff

⇧
�x

+
�
|⌥eff|ei⌃eff�x�x�x +h.c .

⇥⌥
(4)

whereµeff =µ+gµB|Bz |/2 and the effective p-wave pair field reads

|⌥eff|ei⌃eff ⌅ u|⌥|
gµB|Bz |

ei⌃(ey + iex) (5)

The dependence of ⌃eff on ê will be important below when we
consider networks of wires. Equation (4) constitutes an effective
low-energy Hamiltonian for Kitaev’s model in equation (1) in the
low-density limit. From this perspective, the existence of end-
Majoranas in thewire becomesmanifest.We exploit this correspon-
dence below when addressing universal properties such as braiding
statistics, which must be shared by the topological phases described
by equation (3) and the simpler latticemodel, equation (1).

We now seek a practical method to manipulate Majorana
fermions in thewire. Asmotivation, consider applying a gate voltage
to adjust µ uniformly across the wire. The excitation gap obtained
from equation (3) at k=0 varies withµ as

Egap(k = 0)=
⇤⇤⇤⇤
gµB|Bz |

2
�
⌦

|⌥|2 +µ2

⇤⇤⇤⇤

For |µ|<µc =
✏
(gµBBz/2)2 � |⌥|2 the topological phase with end

Majoranas emerges, whereas for |µ| > µc a topologically trivial
phase appears. A uniform gate voltage thus allows the creation or
removal of the Majorana fermions. However, when |µ| = µc the
bulk gap closes, and the excitation spectrum at small momentum
behaves as Egap(k) ⌅ h̄v|k|, with velocity v = 2u|⌥|/(gµB|Bz |). The
gap closure is clearly undesirable, as we would like to manipulate
Majorana fermionswithout generating further quasiparticles.

This problem can be circumvented by employing a ‘keyboard’
of locally tunable gates as in Fig. 2, each impacting µ over a finite
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Rashba-coupled semiconductor quantum wire

(a physical realization of the Kitaev chain)

Lutchyn et al. PRL 2010, Oreg et al. PRL 2010

1-10K

2

FIG. 1: (Color online) (a) Top view of SM/SC heterostructure
embedded into small-inductance SC loop. (b) Side view of the
SM/SC heterostructure. The nanowire can be top-gated to
control chemical potential. Here we assume L�� and L1⇥�
with � being the SC coherence length. (c) Proposed read-out
scheme for the Andreev energy levels. Inductively coupled
rf-driven tank circuit allows time-resolved measuring of the
e�ective state-dependent Josephson inductance [19].

heterostructure exhibits unusual behavior due to the
presence of MFs in the system. In particular, the spec-
trum of Andreev states has an odd number of crossings
at E=0 in the TP phase (C0⌅µ2+�2

0�V 2
x<0 with µ be-

ing chemical potential) whereas in the TP trivial phase
(C0>0) the number of crossings is even. Odd number
of crossings is associated with the presence of MFs in
the system leading to 4⇧-periodic Andreev energy spec-
trum [8]. Thus, this di⇧erence in the spectrum allows
distinguishing TP and conventional SCs. The remark-
able feature of the present proposal is that by changing
Bx or µ across the phase boundary between TP trivial
and nontrivial superconducting phases (C0 =0) one can
contrast di⇧erent qualitative dependence of the Andreev
energy spectrum on magnetic flux ⇤ through the SQUID.

Theoretical model. We consider an infinite (L1⌃⌅) 1D
semiconducting wire embedded into SQUID, see Fig. 1a.
The Hamiltonian describing the nanowire reads (~ = 1)

H0=

� ⇧

�⇧
dx�†

�(x)

⇤
� ✏2x
2m⇥ �µ+i�⌃y✏x+Vx⌃x

⌅

���
���(x), (1)

where m⇥, µ and � are the e⇧ective mass, chemical po-
tential and strength of spin-orbit Rashba interaction, re-
spectively. In-plane magnetic field Bx leads to spin split-
ting Vx=gSMµBBx/2. The radius of the wire R is small
compared to the Fermi wavelength R.⇥F so that there
is a single 1D mode occupied. Because of the proximity
e⇧ect between SM and SC (see Fig. 1b), Cooper pairs can
tunnel into the nanowire. These correlations can be de-
scribed by HSC=

⌥⇧
�⇧dx

�
�(x)�†

⇤(x)�
†
⌅(x)+h.c.

⇥
. Here

�(x) is the induced pairing potential in the nanowire
�(x) = �0⇥(x�L)+�0ei⇥⇥(�x�L) with  being the
phase of the order parameter.

One can recast the full HamiltonianH=H0+HSC in the
dimensionless form by introducing rescaled coordinates
x̃⌅m⇥�x and energies Ẽ⌅E/m⇥�2. The BdG equations

then become H̃BdG⌅(x̃)= Ẽ⌅(x̃). Using the convention
for Nambu spinors ⌅(x) = (u⇤(x), u⌅(x), v⌅(x),�v⇤(x))
the BdG Hamiltonian reads

H̃BdG =

⇤
�1
2
✏2x̃+i⌃y✏x̃�µ̃

⌅
⌥z+Ṽx⌃x (2)

+�̃⇥(x̃�L̃)⌥x+�̃⇥(�x̃�L̃) (cos ⌥x+sin ⌥y) .

The solution of the BdG equations supplemented with
appropriate boundary conditions yields the Andreev
spectrum in the junction. It is useful to solve for the
energy at  = ⇧. At this point the profile of the order
parameter in the limit of L⇧ ⌅ forms a domain wall,
which under certain conditions can host a pair of Ma-
jorana bound states [6]. To demonstrate this we inves-
tigate the existence of zero-energy solution by solving
H̃BdG⌅0(x) = 0. At  =⇧, BdG Hamiltonian (2) is real
and, thus, one can construct real Nambu spinors ⌅0(x).
According to the particle-hole symmetry if ⌅0(x) is a
solution, then ⌃y⌥y⌅0(x) is also a solution. This im-
poses the constraint on the spinor degrees of freedom:
v⇤/⌅(x) = ⇥u⇤/⌅(x) with ⇥ = ±1. Thus, the 4 ⇥ 4 BdG
Hamiltonian can be reduced to 2⇥ 2 matrix:
⇤

� 1
2✏

2
x̃�µ̃ Vx+⇥�̃(x̃)+✏x̃

Vx�⇥�̃(x̃)�✏x̃ � 1
2✏

2
x̃�µ̃

⌅⇤
u⇤(x̃)
u⌅(x̃)

⌅
=0. (3)

One can seek solutions of Eq. (3) in the form u⇤/⌅(x̃)⌥ezx̃

and require solutions for x ? 0 to be normalizable. Let
us concentrate on the x>0 case. Then, the characteristic
equation for z following from Eq.(3) reads

z4+4(µ̃+1)z2+8⇥�̃0z+4C0=0 with C0= µ̃2+�̃2
0�Ṽ 2

x .
(4)

The roots zi of the above quartic equation with real coef-
ficients should satisfy the following constraints:

⌃4
i=1 zi=

4C0 and
⇧4

i=1 zi =0. If all zi are real and C0 > 0, these
constraints are satisfied only when the number of solu-
tions with Re[z]? 0 is the same. If Eq.(4) has at least
one complex solution z1=a+ib, then there is another so-
lution z2= a�ib. Since the other two solutions are given
by the quadratic equation, one can express these roots in
terms of a and b: z3,4=�a±

 
a2�4C0/(a2+b2). Given

that |Re[
 
a2�4C0/(a2+b2)]|< |a| for C0 > 0, there are

two solutions with Re[z]? 0, respectively. Di⇧erent val-
ues of ⇥ change the sign of a, and this conclusion is valid
for both channels ⇥=±1. Thus, when C0 > 0 there are
two exponentially decaying solutions for x ? 0 yielding
4 coe�cients to match. Since the number of constraints
(4 from boundary conditions and 1 from normalization)
is larger than the number of linearly independent coe�-
cients, there are no zero energy solutions for C0>0. On
the other hand, similar analysis for C0<0 always yields
three roots with Re[z]<0 either in ⇥=1 or ⇥=�1 chan-
nels resulting in six coe�cients to match. Therefore, in
this case there is a pair of zero-energy Majorana states.

Potential issues:
• Chemical potential tuning

• Effects of disorder 

• Detection



Experimental realizations

rather than by microtubule reorganization. Thus,
polarization of the DVaxis is independent of the
formation of the microtubule array that defines
the AP axis, as previously proposed.
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Signatures of Majorana Fermions in
Hybrid Superconductor-Semiconductor
Nanowire Devices
V. Mourik,1* K. Zuo,1* S. M. Frolov,1 S. R. Plissard,2 E. P. A. M. Bakkers,1,2 L. P. Kouwenhoven1†

Majorana fermions are particles identical to their own antiparticles. They have been theoretically
predicted to exist in topological superconductors. Here, we report electrical measurements on
indium antimonide nanowires contacted with one normal (gold) and one superconducting
(niobium titanium nitride) electrode. Gate voltages vary electron density and define a tunnel
barrier between normal and superconducting contacts. In the presence of magnetic fields on the
order of 100 millitesla, we observe bound, midgap states at zero bias voltage. These bound states
remain fixed to zero bias, even when magnetic fields and gate voltages are changed over
considerable ranges. Our observations support the hypothesis of Majorana fermions in nanowires
coupled to superconductors.

All elementary particles have an anti-
particle of opposite charge (for example,
an electron and a positron); the meet-

ing of a particle with its antiparticle results in
the annihilation of both. A special class of par-
ticles, called Majorana fermions, are predicted
to exist that are identical to their own anti-
particle (1). They may appear naturally as ele-

mentary particles or emerge as charge-neutral
and zero-energy quasi-particles in a supercon-
ductor (2, 3). Particularly interesting for the
realization of qubits in quantum computing are
pairs of localized Majoranas separated from each
other by a superconducting region in a topolog-
ical phase (4–11).

On the basis of earlier and later semiconductor-
based proposals (6, 7), Lutchyn et al. (8) and
Oreg et al. (9) have outlined the necessary in-
gredients for engineering a nanowire device that
should accommodate pairs of Majoranas. The
starting point is a one-dimensional (1D) nano-
wire made of semiconducting material with
strong spin-orbit interaction (Fig. 1A). In the
presence of a magnetic field B along the axis

of the nanowire (i.e., a Zeeman field), a gap is
opened at the crossing between the two spin-
orbit bands. If the Fermi energy m is inside this
gap, the degeneracy is twofold, whereas outside
the gap it is fourfold. The next ingredient is to
connect the semiconducting nanowire to an
ordinary s-wave superconductor (Fig. 1A). The
proximity of the superconductor induces pairing
in the nanowire between electron states of oppo-
site momentum and opposite spins and induces
a gap, D. Combining this twofold degeneracy
with an induced gap creates a topological super-
conductor (4–11). The condition for a topolog-
ical phase is EZ > (D2 + m2)1/2, with the Zeeman
energy EZ = gmBB/2 (g is the Landé g factor, mB
is the Bohr magneton). Near the ends of the
wire, the electron density is reduced to zero, and
subsequently, m will drop below the subband
energies such that m2 becomes large. At the points
in space where EZ = (D2 + m2)1/2, Majoranas arise
as zero-energy (i.e., midgap) bound states—one
at each end of the wire (4, 8–11).

Despite their zero charge and energy, Ma-
joranas can be detected in electrical measure-
ments. Tunneling spectroscopy from a normal
conductor into the end of the wire should re-
veal a state at zero energy (12–14). Here, we
report the observation of such zero-energy peaks
and show that they rigidly stick to zero energy
while changing B and gate voltages over large
ranges. Furthermore, we show that this zero-
bias peak (ZBP) is absent if we take out any
of the necessary ingredients of the Majorana
proposals; that is, the rigid ZBP disappears for
zero magnetic field, for a magnetic field par-
allel to the spin-orbit field, or when we take
out the superconductivity.
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We use InSb nanowires (15), which are
known to have strong spin-orbit interaction and
a large g factor (16). From our earlier quantum-
dot experiments, we extract a spin-orbit length
lso ≈ 200 nm corresponding to a Rashba param-
eter a ≈ 0.2 eV·Å (17). This translates to a spin-
orbit energy scale a2m*/(2ħ2) ≈ 50 meV (m* =
0.015me is the effective electron mass in InSb,
me is the bare electron mass, and ħ is Planck’s
constant h divided by 2p). Importantly, the g
factor in bulk InSb is very large (g ≈ 50), yield-
ing EZ/B ≈ 1.5 meV/T. As shown below, we find
an induced superconducting gap D ≈ 250 meV.
Thus, for m = 0, we expect to enter the topo-
logical phase for B ~ 0.15 T where EZ starts to
exceed D. The energy gap of the topological
superconductor is estimated to be a few kelvin
(17), if we assume a ballistic nanowire. The
topological gap is substantially reduced in a dis-
ordered wire (18, 19). We have measured mean
free paths of ~300 nm in our wires (15), implying
a quasi-ballistic regime in micrometer-long wires.
With these numbers, we expect Majorana zero-
energy states to become observable below 1 K
and around 0.15 T.

A typical sample is shown in Fig. 1B.We first
fabricate a pattern of narrow (50-nm) and wider
(300-nm) gates on a silicon substrate (20). The
gates are covered by a thin Si3N4 dielectric be-
fore we randomly deposit InSb nanowires. Next,
we electrically contact those nanowires that
have landed properly relative to the gates. The
lower contact in Fig. 1B fully covers the bottom
part of the nanowire. We have designed the up-
per contact to only cover half of the top part of
the nanowire, avoiding complete screening of
the underlying gates. This allows us to change
the Fermi energy in the section of the nanowire
(NW) with induced superconductivity. We have
used either a normal (N) or superconducting (S)
material for the lower and upper contacts, re-
sulting in three sample variations: (i) N-NW-S,
(ii) N-NW-N, and (iii) S-NW-S. Here, we dis-
cuss our main results on the N-NW-S devices,
whereas the other two types, serving as control
devices, are described in (20).

To perform spectroscopy on the induced su-
perconductor, we created a tunnel barrier in the
nanowire by applying a negative voltage to a
narrow gate (dark green area in Fig. 1, B and C).
A bias voltage applied externally between the N
and S contacts drops almost completely across
the tunnel barrier. In this setup, the differential
conductance dI/dV at voltage V and current I is
proportional to the density of states at energy E =
eV (where e is the charge on the electron) relative
to the zero-energy dashed line in Fig. 1C. Figure
1D shows an example taken at B = 0. The two
peaks at T250 meV correspond to the peaks in the
quasi-particle density of states of the induced
superconductor, providing a value for the in-
duced gap, D ≈ 250 meV. We generally find a
finite dI/dV in between these gap edges. We ob-
serve pairs of resonances with energies symmetric
around zero bias superimposed on nonresonant

currents throughout the gap region. Symmetric
resonances likely originate from Andreev bound
states (21, 22), whereas nonresonant current in-
dicates that the proximity gap has not fully de-
veloped (23).

Figure 2 summarizes our main result. Figure
2A shows a set of dI/dV-versus-V traces taken at

increasingB fields in 10-mTsteps from 0 (bottom
trace) to 490 mT (top trace), offset for clarity. We
again observe the gap edges at T250 meV. When
we apply a B field between ~100 and ~400 mT
along the nanowire axis, we observe a peak at
V= 0. The peak has an amplitude up to ~0.05·2e2/h
and is clearly discernible from the background
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Fig. 1. (A) Outline of theoretical proposals. (Top) Conceptual device layout with a semiconducting
nanowire in proximity to an s-wave superconductor. An external B field is aligned parallel to the wire.
The Rashba spin-orbit interaction is indicated as an effective magnetic field, Bso, pointing perpendicular
to the nanowire. The red stars indicate the expected locations of a Majorana pair. (Bottom) Energy, E,
versus momentum, k, for a 1D wire with Rashba spin-orbit interaction, which shifts the spin-down band
(blue) to the left and the spin-up band (red) to the right. Blue and red parabolas are for B = 0; black
curves are for B ≠ 0, illustrating the formation of a gap near k = 0 of size Ez (m is the Fermi energy with
m = 0 defined at the crossing of parabolas at k = 0). The superconductor induces pairing between states
of opposite momentum and opposite spin, creating a gap of size D. (B) Implemented version of the-
oretical proposals. Scanning electron microscope image of the device with normal (N) and super-
conducting (S) contacts. The S contact only covers the right part of the nanowire. The underlying gates,
numbered 1 to 4, are covered with a dielectric. [Note that gate 1 connects two gates, and gate 4
connects four narrow gates; see (C).] (C) (Top) Schematic of our device. (Bottom) illustration of energy
states. The green rectangle indicates the tunnel barrier separating the normal part of the nanowire on
the left from the wire section with induced superconducting gap, D. [In (B), the barrier gate is also
shown in green.] An external voltage, V, applied between N and S drops across the tunnel barrier. Red
stars again indicate the idealized locations of the Majorana pair. Only the left Majorana is probed in
this experiment. (D) Example of differential conductance, dI/dV, versus V at B = 0 and 65 mK, serving
as a spectroscopic measurement on the density of states in the nanowire region below the
superconductor. Data are from device 1. The two large peaks, separated by 2D, correspond to the quasi-
particle singularities above the induced gap. Two smaller subgap peaks, indicated by arrows, likely
correspond to Andreev bound states located symmetrically around zero energy. Measurements are
performed in dilution refrigerators with the use of the standard low-frequency lock-in technique
(frequency = 77 Hz, excitation = 3 mV) in the four-terminal (devices 1 and 3) or two-terminal (device 2)
current-voltage geometry.
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conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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Fig. 3.Gate-voltage dependence. (A) A 2D color plot of dI/dV versus V and voltage on gate 2 at 175 mT
and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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The fractional a.c. Josephson effect in a
semiconductor–superconductor nanowire as a
signature of Majorana particles
Leonid P. Rokhinson1*, Xinyu Liu2 and Jacek K. Furdyna2

Topological superconductors that support Majorana fermions
have been predicted when one-dimensional semiconducting
wires are coupled to a superconductor1–3. Such excitations
are expected to exhibit non-Abelian statistics and can be
used to realize quantum gates that are topologically protected
from local sources of decoherence4,5. Here we report the
observation of the fractional a.c. Josephson effect in a hybrid
semiconductor–superconductor InSb/Nb nanowire junction, a
hallmark of topological matter. When the junction is irradiated
with a radiofrequency f0 in the absence of an external magnetic
field, quantized voltage steps (Shapiro steps) with a height
�V = hf0/2e are observed, as is expected for conventional
superconductor junctions, where the supercurrent is carried
by charge-2e Cooper pairs. At high magnetic fields the height
of the first Shapiro step is doubled to hf0/e, suggesting that
the supercurrent is carried by charge-e quasiparticles. This
is a unique signature of the Majorana fermions, predicted
almost 80 years ago6.

In 1928 Dirac reconciled quantum mechanics and special
relativity in a set of coupled equations that became the cornerstone
of quantum mechanics7. Its main prediction that every elementary
particle has a complex conjugate counterpart—an antiparticle—has
been confirmed by numerous experiments. A decade laterMajorana
showed that Dirac’s equation for spin-1/2 particles can be modified
to permit real wavefunctions6,8. The complex conjugate of a real
number is the number itself, which means that such particles are
their own antiparticles. Although the search for Majorana fermions
among elementary particles is continuing9, excitations with similar
properties may emerge in electronic systems4, and are predicted to
be present in some unconventional states ofmatter10–15.

Ordinary spin-1/2 particles or excitations carry a charge, and
thus cannot be their own antiparticles. In a superconductor, how-
ever, free charges are screened, and charge-less spin-1/2 excitations
become possible. The Bardeen–Cooper–Schrieffer (BCS) theory of
superconductivity allows fermionic excitations that are a mixture
of electron and hole creation operators, �i = c †

i + ci. This creation
operator is invariant with respect to charge conjugation, c †

i � ci. If
the energy of an excitation created in this way is zero, the excitation
will be a Majorana particle. However, such zero-energy modes are
not permitted in ordinary s-wave superconductors.

The present work is inspired by ref. 15, where the authors
show that Majorana fermions can be formed in a coupled
semiconductor/superconductor system. Superconductivity can be
induced in a semiconductormaterial by the proximity effect. At zero
magnetic field electronic states are doubly degenerate andMajorana

1Department of Physics, Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
47907, USA, 2Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA. *e-mail: leonid@purdue.edu.
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Figure 1 |Devices layout. a, Optical image of a sample with several devices.
A single d.c. SQUID device is outlined with a red oval. On the enlarged AFM
image a single Josephson junction is shown. The light areas are Nb. A light
brown halo around Nb is a thin 2–3 nm Nb layer which defines the width of
the semiconductor wire after wet etching. The direction of the spin–orbit
field Bso is indicated by the green arrow. b, A schematic view of the device,
the orange dots mark the expected positions of Majorana particles inside
the InSb nanowire. c, Energy dispersion in a material with spin–orbit
interaction �D in the presence of magnetic field B⇥ Bso.

modes are not supported. In semiconductors with strong spin–orbit
interactions the two spin branches are separated in momentum
(k) space, but spin–orbit interactions do not lift the Kramer’s
degeneracy. However, in a magnetic field B⇥Bso there is a range
of energies where double degeneracy is lifted16, see the schematic in
Fig. 1c. If the Fermi energy EF is tuned to be within this single-mode
range of energies, EZ >

⌃
�2 +E2

F , (where � is the proximity gap,
EZ = gµBB/2 is the Zeeman energy, µB is the Bohr magneton, and
g is the Landé g -factor), the proximity effect from a conventional s-
wave superconductor induces p-wave pairing in the semiconductor
material and drives the system into a topological superconducting
state which supports Majorana particles. Theoretically, it has been
predicted that proper conditions for this to occur can be realized
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of energies where double degeneracy is lifted16, see the schematic in
Fig. 1c. If the Fermi energy EF is tuned to be within this single-mode
range of energies, EZ >

⌃
�2 +E2

F , (where � is the proximity gap,
EZ = gµBB/2 is the Zeeman energy, µB is the Bohr magneton, and
g is the Landé g -factor), the proximity effect from a conventional s-
wave superconductor induces p-wave pairing in the semiconductor
material and drives the system into a topological superconducting
state which supports Majorana particles. Theoretically, it has been
predicted that proper conditions for this to occur can be realized
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Figure 3 | a.c. Josephson effect and Shapiro steps. Left: differential resistance dV/dI (in k⌦, colour scale) of JJ8 is plotted as a function of the rf amplitude
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characteristics at Vrf =0.2, 3, 4, 5 and 6mV are shown as white lines; their zero is shifted vertically and is marked by dashed white lines. A horizontal
green line separates low and high rf power regimes. The small vertical green bar indicates the scale of 12 µV on the |V(I)| curves. Right: V(I) characteristics
of JJ8 in the presence of B�Imeasured with Vrf between 3 and 6mV in 0.6mV increments. For B<2T, Shapiro steps with a height ⌅V= h⇥rf/2e=6 µV are
clearly observed. For B> 2T the plateau at 6 µV disappears, as emphasized by dashed ovals, and the first step is observed at 12 µV. This doubling of the
first Shapiro step is a signature of the a.c. fractional Josephson effect, and is a hallmark of a topological superconductivity.
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characteristic of a resistively shunted Josephson junction in an
intermediate damping regime34. Indeed, we measure high leakage
to the substrate, and estimate the shunting resistance Rs ⇤< 1 k⌦.
The measured resistance in the normal state is R⇧

N = 650⌦, and the
actual normal resistance of the JJ8 RN ⌅ 2–6 k⌦, consistent with the
number of one-dimensional channels estimated from the size of the
wire. The product RNIc ⌅ 1mV> 2� indicates that JJ8 is in a clean
limit (weak link length Leff < ⇤ ,l , where ⇤ is the coherence length
and l is the mean free path), a proper condition for the formation
of Majorana particles.

Normalized differential conductance, plotted in the right panel
of Fig. 2, shows enhancement at low voltages. This excess current
is a signature of Andreev reflection35,36. Most important for our

measurements is that the excess current, and thus coherent electron
transport, is observed at high in-plane magnetic fields up to 4 T, as
shown in the the inset.

In the presence of microwave excitation, phase locking be-
tween the rf field and the Josephson supercurrent gives rise to
constant-voltage Shapiro steps in the V (I ) characteristics at Vn =
nhf0/q, where h is Planck’s constant, q is the charge of quasiparticles,
f0 is themicrowave frequency, and n=0,±1,±2... (ref. 37). Shapiro
steps for f0 = 3GHz are shown in Fig. 3. At B= 0 we observe steps
with a height⌅V =6µV, consistentwith theCooper pair tunnelling
(q = 2e). ⌅V scales linearly with f0 (refer to the Supplementary
Information). The evolution of the steps with Vrf is best visualized
in the dV /dI plots, where steps with 0< n< 10 are seen at high rf
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on Fe chains demonstrate that topological states
can be identified using STM by establishing (i)
ferromagnetism on the chain, (ii) spin-orbit cou-
pling in the host superconductor (or at its surface),
(iii) a superconducting gap in the bulk of the chain,
and finally (iv) a localized ZBP due to MQPs at the
ends of the chain. One can overconstrain these
conditions by providing evidence that the system
has an odd number of band crossings at EF. The
disappearance of edge-localized ZBPs when the
underlying superconductivity is suppressed pro-
vides an additional check to show that the MQP
signature is associated with superconductivity
and not with other phenomena, such as the
Kondo effect (20–22).

Ferromagnetic Fe atomic chains on the
Pb(110) surface

To fabricate an atomic chain system on the sur-
face of a superconductor with strong spin-orbit
coupling, we used a Pb(110) single crystal, which
we prepared with cycles of in situ sputtering and
annealing. Following submonolayer evaporation
of Fe on the Pb surface at room temperature and
light annealing, STM images (temperature was
1.4 K for all experiments reported here) show
large atomically ordered regions of the Pb(110)
surface, as well as islands and chains of Fe atoms
that have nucleated on the surface (Fig. 2A). The
islands appear to provide the seed from which
chains self-assemble following the anisotropic
structure of the underlying surface. Depending
on growth conditions, we find Fe chains as long
as 500 Å, usually with an Fe island in the middle
(inset, Fig. 2A). In longer chains, the ends are
separated from the islands in themiddle by atom-
ically ordered regions that are 200 Å long. High-
resolution STM images show that the chains
(with an apparent height of ~2 Å) are centered
between the atomic rows of Pb(110), display
weak atomic corrugation (5 to 10 pm), and strain
the underlying substrate (Fig. 2, B to D). Approx-
imate periodicities of 4.2 and 21 Å measured on
the chain show that the Fe chain has a structure
that is incommensurate with that of the under-
lying Pb surface. To identify the atomic structure
of our chains, we performed density functional
theory (DFT) calculations of Fe on the Pb(110)
surface; these calculations show that strong
Fe-Pb bonding results in a partially submerged
zigzag chain of Fe atoms between Pb(110) atom
rows [Fig. 2, E and F; see section 3 of (36) for DFT
details]. From these calculations, we find that
among several candidate structures with the ex-
perimental periodicity, a three-layer Fe zigzag
chain partially submerged in Pb has the lowest
energy and gives contours of constant electron
density most consistent with our STM images.
We use a combination of spectroscopic and

spin-polarizedmeasurements to demonstrate that
Fe atomic chains on Pb(110) satisfy the criteria
[conditions (i) to (iv) above] required to demon-
strate a 1d topological superconductor. First, we
discuss spin-polarized STM studies that show
experimental evidence for ferromagnetism on
the Fe chains and strong spin-orbit coupling on
the Pb surface (Fig. 3, A to C). Using Cr STM tips,

which have been prepared using controlled in-
dentation of the tip into Fe islands, wemeasured
tunneling conductance (dI/dV) at a low bias volt-
age (V = 30 mV) as a function of magnetic field
perpendicular to the surface on both chains and
on the Pb substrate (Fig. 3, A and B). We val-
idated our preparation of spin-polarized tips by
also performing experiments on Co on Cu(111),
now a standard system (40) for verifying spin-
polarized STM capabilities, in situ during the
same experimental runs. The spin-polarizedmea-
surements on the Fe chains showhysteresis loops
characteristic of tunneling between two ferro-
magnets with the field switching only one of
them (at ~0.25 T) (42, 43). The strength of the
spin-polarized STM signal varies along the chain,
probably due to the electronic and structural
properties of our zigzag Fe chains. We find that
tunneling with the same tip on the Pb(110) surface
far from the Fe chains also shows field-dependent
conductance. In contrast to the asymmetric be-
havior observed on the chains, the field depen-
dence on the substrate is symmetric with field, as
expected for tunneling into nonmagnetic Pb, but
still shows the switching behavior that is due to

magnetization reversal of the tip. Similar tun-
neling magnetoresistance curves have previously
been reported for tunneling from a ferromagnet
into semiconductors and have been attributed to
spin-polarized tunneling in the presence of strong
spin-orbit interactions (44). The field-dependent
signal on Pb is consistent with a preference for
spins to be in the plane of the surface, in which
case further polarization of the tip’s magnetiza-
tion perpendicular to the surface suppresses tun-
neling conductance. The size of this signal depends
on the orientation of the tip’s magnetization
relative to that of the spins at the surface. This
observation is consistent with a Rashba-like
(k · s, where k is the electron's momentum and
s is the spin) spin-orbit coupling at the Pb(110)
surface upon which our ferromagnetic Fe chain
is self-assembled.
Our DFT calculations confirm that the zigzag

Fe chains in Pb(110) are ferromagnetic [section
3 of (36)], as expected given that the distance
between the Fe atoms is close in that of bulk
Fe. These calculations also demonstrate that
Fe chains on Pb have an exchange energy J of
~2.4 eV andamagnetic anisotropy energy (1.4meV
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Fig. 1. Topological superconductivity and Majorana fermions in ferromagnetic atomic chains on a
superconductor. (A) Schematic of the proposal for MQP realization and detection: A ferromagnetic
atomic chain is placed on the surface of strongly spin-orbit–coupled superconductor and studied using
STM. (B) Band structure of a linear suspended Fe chain before introducing spin-orbit coupling or
superconductivity.Themajority spin-up (red) andminority spin-down (blue) d-bands labeled by azimuthal
angular momentum m are split by the exchange interaction J (degeneracy of each band is noted by the
number of arrows). a, interatomic distance. (C) Regimes for trivial and topological superconducting
phases are identified for the band structure shown in (B) as a function of exchange interaction in presence
of SO coupling.The value J for Fe chains based on DFTcalculations is noted [sections 1 and 3 of (36)].
m is the chemical potential. (D) Model calculation of the local density of states (LDOS) of the atomic chain
embedded in a 2D superconductor [section 2 of (36)].The left panel shows an image of the chain and the
locations at which the LDOS is represented in the right panel; the LDOS curves are offset for clarity. In-gap
(Shiba) and zero-energy (MQP) features in LDOS are noted. (E) Spatially resolved LDOS calculated at
various energies noted at the bottom using the samemodel. Red (or blue) indicates regions of the high (or
low) LDOS. a.u., arbitrary units.
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TOPOLOGICAL MATTER

Observation of Majorana fermions in
ferromagnetic atomic chains on
a superconductor
Stevan Nadj-Perge,1* Ilya K. Drozdov,1* Jian Li,1* Hua Chen,2* Sangjun Jeon,1

Jungpil Seo,1 Allan H. MacDonald,2 B. Andrei Bernevig,1 Ali Yazdani1†

Majorana fermions are predicted to localize at the edge of a topological superconductor,
a state of matter that can form when a ferromagnetic system is placed in proximity to a
conventional superconductor with strong spin-orbit interaction.With the goal of realizing a
one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe)
atomic chains on the surface of superconducting lead (Pb). Using high-resolution
spectroscopic imaging techniques, we show that the onset of superconductivity, which
gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the
appearance of zero-energy end-states. This spatially resolved signature provides strong
evidence, corroborated by other observations, for the formation of a topological phase and
edge-bound Majorana fermions in our atomic chains.

T
opological superconductors are a distinct
form of matter that is predicted to host
boundary Majorana fermions (1–3). These
quasi-particles are the emergent condensed
matter analogs of the putative elementary

spin-1/2 particles originally proposed by Ettore
Majorana (4) with the intriguing property of
being their own antiparticles. Supersymmetric
theories in particle physics and some models
for dark matter in cosmology motivate an on-
going search for free Majorana particles (5, 6).
The search for Majorana quasi-particle (MQP)
bound states in condensed matter systems is mo-
tivated in part by their potential use as topolog-
ical qubits to perform fault-tolerant computation
aided by their non-Abelian characteristics (7, 8).
Spatially separated pairs of MQP pairs can be
used to encode information in a nonlocal fashion,
making them more immune to quantum deco-
herence. Early proposals for the detection of
MQPs were based on the properties of super-
fluid 3He, on exotic fractional quantumHall states,
or on correlated superconductors (9–12). The fo-
cus in the past few years has shifted to the search
for these exotic fermions in weakly interacting
synthetic systems inwhich proximity to a conven-
tional Bardeen-Cooper-Schrieffer (BCS) supercon-
ductor is used in concert with other electronic
properties to create the topological phase that
hosts MQPs.
The idea that MQPs can be engineered in the

laboratory grew from the theoretical observation

that proximity-induced superconductivity on the
surface state of a topological insulator is topo-
logical in nature (13). Pairing on a spinless Fermi
surface (1), created in this case by the spin-
momentum locking of topological surface states,
must be effectively p-wave to satisfy the pair–
wave function antisymmetry requirement and is
therefore topological. This approach was later ex-
tended to systems in which a semiconductor
nanowire with strong spin-orbit interactions in a
parallel magnetic field is in contact with a su-
perconductor (14, 15). Experimental efforts to im-
plement the nanowire proposal have uncovered
evidence for a zero-bias peak (ZBP) in tunneling
spectroscopy studies of hybrid superconductor-
semiconductor nanowire devices, as expected in
the presence of the MQP states of a topological
superconductor (16–19). However, the ZBPs de-
tected in such devices could also be caused by the
Kondo effect or disorder (20–24). A key disad-
vantage of the nanowire studies is that they lack
the ability to spatially resolve ZBP features in
order to demonstrate that they are localized at
the boundary of a gapped superconducting phase.
Here we introduce a method of fabricating one-
dimensional (1D) topological superconductors
and detecting their MQPs that achieves both
spatial and spectral resolution.

Magnetic atomic chains as a platform
for topological superconductivity

Magnetic atom chains on the surface of a con-
ventional s-wave superconductor have been pro-
posed to provide a versatile platform for the
realization of topological superconductors (25).
This platform lends itself to the detection ofMQPs
by scanning tunneling microscopy (STM). In the
absence of intrinsic spin-orbit coupling, previ-
ous theoretical work (25–30) has shown that a

topological phase emerges in an atomic chain
when its magnetic atoms have a spatially modu-
lated spin arrangement—for example, a spin
helix. The spin texture of the chains emulates
the combination of spin-orbit and Zeeman inter-
actions required to create a topological phase.
Helical spin configurations are, however, much
less common in atomic chains than simple ferro-
magnetic and antiferromagnetic ones or may be
more influenced by disorder (31). We therefore
explore an alternate, more realizable scenario by
placing an Fe chain on the surface of Pb (Fig. 1A).
We will show that the essential ingredients for
topological superconductivity in this scenario are
the ferromagnetic interaction between Fe atoms
realized at the Fe-Fe bond distance and the strong
spin-orbit interaction in superconducting Pb (32).
Our approach is related to earlier proposals for
topological superconductivity using half-metal fer-
romagnets or metallic chains placed in contact
with superconductors in the presence of spin-
orbit interactions (33–35).
To illustrate the key ingredient of our approach,

we first consider an idealized ferromagnetic chain
of Fe atoms described by a tight-binding model
calculation [section 1 of (36)]. We use hopping
parameters appropriate for d orbitals of bulk Fe
to compute the band structure of a freely sus-
pended linear Fe chain (Fig. 1B). The large ex-
change interaction results in a fully occupied
majority spin band with the Fermi level (EF) re-
siding in the minority spin bands. Coupling the
Fe chain to a BCS superconductor with strong
spin-orbit interaction (such as Pb), we find that
the spin-orbit interactions lift many of the de-
generacies in the chain’s band structure shown
in Fig. 1B, while at the same time allowing for the
occurrence of p-wave superconductivity [section
1 of (36)]. Because only the Fe d-bands will be
strongly spin-polarized, other bands are unlikely
to influence the topological character of the sys-
tem,whether they residemainly on the Fe chains
or on the substrate. Notably, for large exchange
interaction, topological superconductivity is ubi-
quitous to the type of band structure shown in
Fig. 1B—occurring for nearly all values of the
chemical potential [Fig. 1C and (36) for details].
In this idealized situation, the number of mi-
nority spin bands that cross the Fermi level is
almost always odd, making the presence of MQPs
at the ends of the chains almost guaranteed.
We consider another idealized situation for

topological superconductivity by modeling a fer-
romagnetic chain embedded in a 2D supercon-
ductor, which allows us to identify its signatures
in STM measurements [section 2 of (36)]. The
spatially resolved density of states (DOS) of this
2D model at positions on the chain differs from
that of a BCS superconductor by the presence of
Yu-Shiba-Rusinov in-gap states (Fig. 1, C and D)
(37–41). These calculations also exhibit the spa-
tial and spectroscopic signatures of MQPs at the
chain ends (Fig. 1, D and E). Other more realistic
models for our experimental systemare alsoworth
exploring (see below), and nontopological phases
can occur for some chain geometries. These mod-
el studies of proximity-induced superconductivity
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length of MQP end states more quantitatively,
this experiment establishes that our ZBPs are not
associated with disorder at the end of our chains.
More specifically, our model calculations show
the wave function of the MQP at one end of our
hybrid chain-superconductor system to have a
combination of power-law decay (on the Fermi
length scale) and an exponential decay (related
to the p-wave pairing’s coherence length) as a
function of distance from the end of the chains
[section 2 of (36)] (46). Our experimentally ob-
served decay of the ZBP over 15 to 20 Å (Figs. 4
and 5) is probably associated with the power-law
decay and the effective Fermi wavelength in our
chain and is consistent with the suppression of
theMQP signatures in chains of twice that length.
The small ZBP splitting thatmay be present even
in our longest chains is smaller than our energy
resolution, which is ~100 to 200 meV for mea-
surements with the superconducting tip. Besides
the coupling between the MQPs on either side of
a chain, there are situations in which multiple
channels on the chain can give rise to multiple
MQP at the same end of the chain [section 2 of
(36)]. Generically, a perturbation can couple and
split these MQPs, unless they are protected by
a symmetry [see, for example, (47)] of the system,
resulting in the absence of topological supercon-
ductivity. Ultimately, the splitting of our MQPs
needs to be experimentally tested using higher-
resolution measurements. Our ability to charac-
terize splitting is limited by thermal broad-
ening (1.4 K), which accounts for the width of
the experimental features and contributes to the
background tunneling conductance at zero bias—
so-called quasi-particle poisoning ofMQP [section
9 of (36)]. Future studies will require millikelvin
STMmeasurements, a capability that has already
been demonstrated in experiments on other exotic
superconductors (48). Overall, based on the results
of these control experiments together with the ob-
servation of all four enumerated experimental sig-
natures,we conclude that our results are consistent
with the realization of a topological superconduct-
ing state with localized MQPs.

Outlook

The experimental system described here demon-
strates a platform for future experiments to
manipulate MQPs and to realize other related
1D or 2D topological superconducting phases.
An obvious extension of our experiments is to
2D islands of ferromagnetic films on the surface
of Pb. Provided that these films are thin enough,
a few monolayers as in our chains, pairing could
be stabilized at a reasonable temperature and
the edges of these islands could harbor propagat-
ing Majorana modes. The detailed structure of
such modes, whether they can be chiral or fully
in-gap, depends on the spin-orbit coupling con-
figuration. Searching for other systemswith both
even and odd numbers of band crossings at EF
on Pb can be used to further test the concept
behind our studies and should showboth topolog-
ical and nontopological superconducting phases.
Although the phase with the even number of
crossings at theEF is not topological, it is amodel

system to form the Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) phase that has amodulated gap structure
with a periodicity related to (in the simplest case)
the difference between the two Fermi points (1D)
or circles (2D) (49, 50). STM spectroscopic map-
ping can be used to characterize the modulated
gap structure of this system and provide evidence
for an FFLO phase.
Ultimately, manipulation of MQPs is required

to demonstrate braiding and the non-Abelian
characteristics of these quasi-particles. We have
recently proposed that application of a parallel
magnetic field to ringlike magnetic atomic struc-

tures fabricated on a thin film superconductor
can be used to generate edges between trivial and
topological regions with MQP in such rings (51).
The rotation of the parallel magnetic field (that
does not perturb superconductivity in thin films)
can then be used to manipulate and braid MQPs
in ringlike atomic structures. This proposal ap-
plies to both the spin-helix arrangement of mag-
netism as well as to the ferromagnetic chains
studied here. In addition to manipulatingMQPs,
a parallel field applied to a chain on a thin film
superconductor can also beused to drive the chains
between topological and trivial superconducting

606 31 OCTOBER 2014 • VOL 346 ISSUE 6209 sciencemag.org SCIENCE

Fig. 4. Spectroscopic mapping of atomic chains and ZBPs. (A) STM spectra measured on the
atomic chain at locations corresponding to those indicated in (B) and (C). For clarity, the spectra are
offset by 100 nS.The red spectrum shows the ZBP at one end of the chain.The gray trace measured on
the Pb substrate can be fit using thermally broadened BCS DOS (dashed gray line, fit parameters Ds =
1.36meV, T = 1.45 K). (B andC) Zoom-in topography of the upper (B) and lower end (C) of the chain and
corresponding locations for spectra marked (1 to 7). Scale bars, 25 Å. (D and E) Spectra measured at
marked locations, as in (B) and (C). (F) Spatial and energy-resolved conductance maps of another Fe
atomic chain close to its end, which shows similar features in point spectra as in (A).The conductance
map at zero bias (middle panel) shows increased conductance close to the end of the chain. Scale bar,
10 Å.We note that the localization length of the MQPobserved here is a factor of 10 or smaller in length
than the distance from the end to the islands that form in the middle of the chains.
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Experimental Detection of a Majorana Mode in the core of a Magnetic Vortex inside
a Topological Insulator-Superconductor Bi2Te3=NbSe2 Heterostructure
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Majorana fermions have been intensively studied in recent years for their importance to both
fundamental science and potential applications in topological quantum computing. They are predicted
to exist in a vortex core of superconducting topological insulators. However, it is extremely difficult to
distinguish them experimentally from other quasiparticle states for the tiny energy difference between
Majorana fermions and these states, which is beyond the energy resolution of most available techniques.
Here, we circumvent the problem by systematically investigating the spatial profile of the Majorana mode
and the bound quasiparticle states within a vortex in Bi2Te3 films grown on a superconductor NbSe2. While
the zero bias peak in local conductance splits right off the vortex center in conventional superconductors, it
splits off at a finite distance ∼20 nm away from the vortex center in Bi2Te3. This unusual splitting behavior
has never been observed before and could be possibly due to the Majorana fermion zero mode. While the
Majorana mode is destroyed by the interaction between vortices, the zero bias peak splits as a conventional
superconductor again. This work provides self-consistent evidences of Majorana fermions and also
suggests a possible route to manipulating them.

DOI: 10.1103/PhysRevLett.114.017001 PACS numbers: 74.55.+v, 68.37.Ef, 74.25.Ha, 74.45.+c

Identical to their antiparticles, Majorana fermions (MF)
were proposed in 1937 as an alternative to Dirac theory of
ordinary fermions that carry opposite charge from their
antiparticles [1]. Neutrinos are the first candidate for MF in
particle physics, but their Majorana status remains to be
confirmed [2]. There are also proposals that quasiparticles
in certain quantum condensed matter systems may be
MFs. Examples include 5=2 fractional quantum Hall state,
cold atoms, and chiral p-wave superconductors [3,4].
Experimental realization of MFs is of great significance
in fundamental physics. MFs obey non-Abelian statistics,
and thus can be used to develop topological quantum
computation. The recent work by Fu and Kane predicted
that MFs should be present as zero-energy bound states at
vortex cores of an engineered heterostructure consisting of
a normal s-wave superconductor (SC) and a topological
insulator (TI) [5]. Cooper pairs are introduced via the
proximity effect to the TI surface where spin and momen-
tum are locked in the topological surface state (TSS) band
[6,7]. This leads to an unusual p-wave-like paired state that
is time-reversal invariant and robust against disorder [8].
Theoretical studies later showed that the MFs may also

reside at two ends of a semiconductor nanowire (NW) with
strong spin-orbit coupling when it is contacted to an s-wave
SC in a proper external magnetic field [9]. Several transport
measurements revealed a signature of MFs, i.e., a sharp
zero-bias peak in differential conductance spectrum, in
various NW-SC junctions [10–14]. In InSb=Nb junction, an
unconventional fractional ac Josephson effect was observed
and attributed to the existence of MFs [15]. However,
alternative explanations of these transport results based on
disorder and/or band bending in the NWs have been
proposed [16–19]. Very recently, S. Nadj-Perge et al. have
reported their observation of MF on Fe atomic chains [20],
as yet, no conclusive evidence has been established for the
existence of MF [21].
In contrast, the disorder alone is unlikely to induce a

zero-bias peak in a superconducting TI, which can be used
to detect MFs without the complications mentioned above.
Proximity effect induced superconductivity in a TI surface
has been demonstrated in several TI/SC heterostructures
[22–25]. To obtain the evidence for the existence of MFs, a
promising route is to detect the zero-bias bound state at
vortex cores of a TI/SC heterostructure with scanning
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tunneling microscopy and spectroscope (STM/STS), so
that a single Majorana mode at a vortex core can be
explicitly identified.
Very recently, we have succeeded in constructing TI-SC

heterostructures with an atomically smooth interface by
growing epitaxial thin films of Bi2Se3 and Bi2Te3 on
NbSe2 single crystals, where coexistence of Cooper pairs
and TSS was illustrated [26,27]. Abrikosov vortices
and Andreev bound states therein were observed in the
Bi2Te3=NbSe2 heterostructure with STM and STS [27].
The major difficulty to distinguish the zero mode MF in the
vortex core is the tiny energy gap separating it from
the conventional quasiparticle states, i.e., the Caroli–de
Gennes–Matricon states, [28–30]. The energy gap is
estimated to be 0.83Δ2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ E2

D

p
, where Δ is the super-

conducting gap and ED is the Fermi energy relative to the
Dirac point of the TSS band [31]. For Δ ∼ 1 meV and
ED ∼ 100 meV, the minigap is ∼0.01 meV, which is much
smaller than the present energy resolution (0.1 meV) in
STS. One way to increase the mini gap is to tune the
Fermi level toward the Dirac point. However, in that case,
the superconducting gap Δ becomes very small and
the transition temperature becomes very low due to the
weaker proximity effect; hence, the direct observation of
the Majorana mode is still difficult. Fortunately, the
Majorana mode is not pinned at the central point of a
vortex core, but extensively distributes around the core
center [32], which gives an opportunity to detect the MF by
investigating the spatial distribution of the bound states in
the vortex core. In this work, with STM and STS performed
at 400 mK, we studied in detail the spatial distributions of
the bound states in vortices of TI-SC heterostructures at
different TI thickness. We reveal that the distinction
between thick and thin TI films is very remarkable, which
is attributed to the existence of MFs located at the vortex
cores of thick TI samples.
Figure 1(a) is a schematic illustration for the configu-

ration of the TI-SC heterostructure made by molecular
beam epitaxy [33,34]. Bi2Te3 thin films were grown on
NbSe2 in a layer-by-layer mode, resulting in very large
atomically smooth terraces on the Bi2Te3 surface suited for
vortices measurement by STS (the details on sample
preparation is in the Supplemental Material [35]). As we
shall describe below, the carriers of the systems with 3
quintuple layers (QL) or less are almost from the bulk, and
thus the vortex states are essentially the same as those in
conventional s-wave superconductors. Systems with 5 or 6
QL are topological insulators and the vortex states are
expected to host MFs. We have simulated a single vortex
for 5 QL TI on top of a conventional s-wave SC. Our
calculation shows that there is a pair of MFs, one at the
surface and the other at the interface between the TI and
the conventional SC, in the vortex core, as illustrated in
Fig. 1(b). We show the probability density for the lowest-
lying quasiparticle state in a view field 100 × 100 × 5 of a

lattice model of the 5 QL TI. The amplitude is mainly
concentrated on the top and bottom layers. The extent of the
wave function is slightly larger on the top layer, as we
assumed that the proximity induced pairing potential is
about 50% smaller on the top layer than that on the bottom
layer to cope with the experimental results (details for the
numerics can be found in the Supplemental Material [35]).
The probability distribution in Fig. 1(b) is in contrast to that
in an otherwise conventional vortex line where it would be
roughly uniform along the line instead (see Fig. S2 in the
Supplemental Material[35]).
Figure 1(c) shows a typical contour of zero-bias differ-

ential conductance (ZBC) taken on a 5 QL Bi2Te3 film in
an external magnetic field of 0.1 T. An Abrikosov vortex
is clearly seen, which exhibits higher ZBC values due to
the suppression of superconductivity within the vortex.
Increasing the magnetic field would decrease the distance
of the vortices that exhibit an ordered hexagonal lattice, as
shown in Fig. S3. At the center of the vortex, a peak in
dI=dV due to the bound quasiparticle states can be
measured as shown in Fig. 1(d) (see the Supplemental
Material [35] for the experimental conditions).
Along the dashed line directing to a nearest neighbor

vortex, as indicated in Fig. 1(c) as well as in Fig. S3 [35],
we measured the spatial variation of the dI=dV spectra as a
function of distance (r) away from the vortex center. The
results are given in Fig. 2(a). One can see that only one peak
appears at zero bias in the dI=dV spectra near the vortex
center, and the peak splits into two at a finite distance r. The
splitting energy increases linearly with r. For a better view,
we plot dI=dV as functions of r and sample bias V in a fake
color image in Fig. 2(b), where the positions of the dI=dV
peaks are indicated by red crosses. Two dotted lines are
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FIG. 1 (color). (a) A schematic illustration of topological
insulator-superconductor heterostructure. (b) The calculated re-
sults showing two Majorana modes in a vortex core on 5 QL
Bi2Te3=NbSe2. (c) Avortex mapped by zero-bias dI=dV on 5 QL
Bi2Te3=NbSe2 at 0.1 T and 0.4 K. (d) A sharp zero-bias peak in
the dI=dV spectrum measured at the center of the vortex in (c).
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drawn to illustrate the linear relation between the energy
of the split peaks and the distance r. Extrapolate the lines,
the cross point also gives out the splitting start point.
The results for 2 to 6 QL Bi2Te3 films are shown in
Figs. 2(c)–2(g). Although the splitting can be resolved
almost at the same position ∼20 nm from the center, the
splitting start points (the cross points of the dotted lines) are
obviously different for different films. For 1–3 QL Bi2Te3
films, the peak splits right off the vortex center (zero-
distance splitting), similar to that in a conventional s-wave
superconductor, such as NbSe2 (Refs. [36,37]). In contrast,
for the thicker Bi2Te3 films (4–6 QL), the splitting starts at
a spatial point away from the vortex center (finite-distance
splitting), an apparent deviation from that in a conventional
superconductor. The peak splitting start position as a
function of the thickness of Bi2Te3 films is summarized
in Fig. 2(h); a transition at 4 QL can be clearly observed. It
is noted that along another high symmetry direction that
connects two next-nearest neighbor vortices, as indicated
by the dotted line in Fig. S3, similar peak splitting behavior
is also observed, as shown in Fig. S4.
The finite-distance splitting behavior of the bound states

has not been reported before. We interpret this new feature
related to the topological property of the local electronic
structure. For the 4–6 QL, the Fermi level lies near the top
of the Dirac bands, and also crosses the bottom of the bulk
conduction bands (see Fig. 4). The local density of states
(LDOS) of a vortex as measured in our STM is contributed

to from both the bulk and the topological surface states. The
bulk contribution is similar to that in a conventional
superconductor, and the LDOS or the dI=dV spectra
contributed from the bulk has a maximum (peak) at a final
energy value proportional to the spatial distance r, see
Fig. 2(b), for instance. In what follows we will argue that
the MFmode of the 2D surface state may change the profile
of the dI=dV spectra. For simplicity, we shall neglect the
LDOS contribution from the quasiparticle bound states in
two dimensions, since their contribution is expected to be
similar to that from the bulk. The Majorana mode in the
vortex core has been studied theoretically in Ref. [32]. They
calculated the LDOS for the Nb=Bi2Se3=Nb sandwich
structure, and showed that the MF mode has a spatial
distribution of about 40 nm, with a sharp peak at zero bias
in the dI=dV spectrum near the vortex core. Our sample
structure has similar parameters, so the spatial extension of
the Majorana mode should be similar, although the
envelope function depends on the Fermi wave vector.
The Majorana mode is then expected to enhance the zero
bias LDOS within a range of spatial distance r ∼ 40 nm
away from the vortex core, hence to possibly shift the
maximum of the LDOS from a finite energy to zero bias
energy for small r. The large zero bias LDOS at small r of
the MF mode should be the underlying physics for the
deviation of the zero distance splitting behavior of the
bound state as we observed. Our STM measurement has an
energy resolution of about 0.2 meV. The LDOS within this
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FIG. 2 (color). (a) A series of dI=dV curves measured along the black dashed line in Fig. 1(c), showing the peak of bound states splits
into two at positions away from the vortex center. (b) The color image of (a) for a better view. The split peak positions in the dI=dV
spectra are marked by red crosses, and the dotted lines superimposed on the crosses indicate the start point of the peak splitting.
(c)–(g) The experimental results for 2–6 QL samples, following the similar data process of (b). (h) A summary of the start points of the
peak split, showing a crossover at 4 QL.
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Majorana fermions: 

Ground state degeneracy and non-Abelian 

exchange statistics 

�1 �2

�3
�4

ca =
1
2
(�1 + i�2) cb =

1
2
(�3 + i�4)

Define two fermions

n̂b = c†bcb =
1
2
(1 + i�3�4)

n̂a = c†aca =
1
2
(1 + i�1�2)

and label the resulting Hilbert 
space by eigenvalues na,b = 0, 1

|na, nb� : |0, 0�, |0, 1�, |1, 0�, |1, 1� 4-fold degenerate

ground state



More generally, in the presence of 2N Majorana zero 
modes the ground state exhibits 2N-1-fold degeneracy:

13

surge of interest in Majorana fermions owes much to these
prospects and the aim of this subsection is to explain the
physics behind the phenomenon of non-Abelian exchange
statistics as realized in simple models of 2D topological
superconductors.

1. Non-Abelian exchange statistics: general considerations

As noted before a pair of spatially separated Majo-
rana fermions �j1, �j2 can be thought of as forming one
ordinary fermion represented by creation and annihila-
tion operators c†j , cj defined in Eq. (7). Let us imagine
that we have 2N such well-separated Majorana particles
arranged in a 2D plane. We also assume that there are
no other low-energy degrees of freedom in this region of
space, i.e. our Majorana zero modes are protected by a
minigap. It is easy to see that the ground state of this
system exhibits a 2N -fold degeneracy1 arising from two
possible occupancies nj = 0, 1 of each of the N ordinary
fermion states. The corresponding degenerate Hilbert
space is spanned by basis vectors

|�{nj}� = |n1, n2, . . . nN �, (59)

where nj denotes the eigenvalue of the corresponding
number operator

n̂j = c†jcj =
1
2
(1 + i�j1�j2). (60)

The state vector |⇥� composed of an arbitrary linear com-
bination of the basis vectors |�{nj}� can be used to en-
code quantum information.

This way of encoding quantum information has two
important advantages compared to many other systems.
First, as can be seen from the definition of the number
operator in Eq. (60), the information in each quantum
bit is stored nonlocally. In order to read the information
one must either bring the constituent Majorana particles
close together (to test if the combined fermionic state is
filled or empty by a local measurement) or else perform
a coherent measurement at two distant spatial positions.
On the other hand it is clear that no local measurement
of a single Majorana fermion can access the stored infor-
mation. Since the environment presumably cannot per-
form a non-local measurement the information stored in
the quantum bit n̂j is thought to be immune to the ef-
fects of decoherence. One caveat here is that if there exist
uncontrolled low-energy excitations in the system the en-
vironment can potentially flip the quantum bit (without
reading it) by tunneling a fermion into the qubit – this is

1 In reality the degeneracy is only 2N�1 because of the electron
parity conservation in a superconductor. ⌫ = (

P
j nj) mod 2

represents the electron parity and the sectors with ⌫ even and odd
typically exhibit di�erent ground state energies due to charging
considerations.

possible even if only one Majorana can be accessed. The
existence of the minigap is therefore crucial for preserv-
ing the quantum information stored in a pair of Majorana
zero modes.

The second key feature of the setup described above
is the ability to manipulate the quantum information
stored in |⇥� in a topologically protected fashion. As we
will demonstrate below braiding of Majorana fermions –
i.e. performing adiabatic exchanges of their positions –
implements certain unitary transformations on the state
vector |⇥�. The corresponding braid group turns out to
be non-Abelian, meaning that unitary transformations
describing individual exchanges do not generally com-
mute. A sequence of exchanges performed on a properly
initialized quantum state |⇥i� followed by a readout of
the final state |⇥f � thus constitutes a topologically pro-
tected quantum computation. Unfortunately, it is known
that the braid group realized by exchanging Majorana
fermions is not su⌃ciently rich to perform an arbitrary
unitary transformation on |⇥i� which would be needed
to implement a universal quantum computer. To achieve
the latter the braid group must be supplemented by some
‘unprotected’ operations making the system vulnerable
to decoherence (although in theory much less so than a
non-topological quantum computer).

Majorana fermions with the above non-Abelian ex-
change statistics have been theoretically proposed to ex-
ist in a number of 2D systems. Historically the first
was the so called Moore-Read Pfa⌃an state that many
believe describes the fractional quantum Hall state ob-
served at ⇥ = 5

2 filling. Another is the thin film of a
spin-polarized px + ipy superconductor, which may be
realized in Sr2Ru3, although definitive evidence for this
pairing state is still lacking. More recently Fu and Kane
proposed that a 2D topological superconductor with the
requisite properties could arise at an interface formed
between a 3D topological insulator and a conventional
s-wave superconductor. Majorana zero modes are ex-
pected to be localized in the cores of Abrikosov vortices
in such a 2D superconductor. In the following we shall fo-
cus on this model because it is closest in the spirit to our
previous discussions and also because it might be most
amenable to various practical tests of non-Abelian ex-
change statistics. Although the underlying mathematics
di⇤ers in some details, the key aspects of the physics de-
scribing the px+ipy superconductor and the Moore-Read
Pfa⌃an state are the same.

2. Vortices in Fu-Kane model

Fu and Kane envisioned inducing superconductivity in
the surface state of a 3D topological insulator by covering
in with a thin film of an ordinary s-wave superconductor
such as Pb or Nb as depicted in Fig. 8a. Although more
elaborate treatments are possible the simplest model that
captures the essential physics of this situation consists
of a Hamiltonian h0 describing the TI surface defined

• One can imagine encoding quantum information into 
the ground-state wavefunction in a way that is 
protected against environmental decoherence 

|⇥� =
�

C{nj}|�{nj}�

• One can furthermore manipulate 
this quantum information by 
braiding the Majorana fermions



Exchange and braiding

�1 �2

�3
�4

Upon exchange the 
wavefunction transforms as
�(r1, r2) �� �(r2, r1) (bosons)
�(r1, r2) �� ��(r2, r1) (fermions)

�(r1, r2) �� ei��(r2, r1) (anyons)

Majorana fermions are 

“non-Abelian anyons” and 
upon exchange transform as:

�1 �� ��2

�2 �� �1



For 2N Majoranas a pairwise exchange can be 
implemented in terms of a unitary transformation 

�k �� Tij�kT †
ij , Tij =

1�
2
(1 + �i�j)

From this we can read off the effect of the exchange 
on the quantum state

�1 �2

�4

T12|na, nb� = ei �
4 (1�2na)|na, nb�

T12T12|na, nb⇥ = i(�1)na |na, nb⇥

�3

T13|na, nb⇥ =

=
1⇤
2

(|na, nb⇥+ (�1)na |n̄a, n̄b⇥) (1)

T13T13|na, nb⇥ = (�1)na |n̄a, n̄b⇥



Majorana exchange summary:

 The Hilbert space spanned by Majorana zero 
modes can be used to encode and manipulate 
quantum information.

 This is effected by pairwise exchanges 

which implement unitary transformations on 
the state vector  

 The operations form a non-Abelian group, 

e.g. T12T23 ≠ T23T12.
 Unfortunately, the group structure is not 

sufficiently rich to implement a universal 
quantum computer.
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Figure 2 |Applying a ‘keyboard’ of individually tunable gates to the wire
allows local control of which regions are topological (dark blue) and
non-topological (light blue), and hence manipulate Majorana fermions
while maintaining the bulk gap. As a and b illustrate, sequentially applying
the leftmost gates drives the left end of the wire non-topological, thereby
transporting �1 rightward. Nucleating a topological section of the wire from
an ordinary region or vice versa creates pairs of Majorana fermions out of
the vacuum as in c. Similarly, removing a topological region entirely or
connecting two topological regions as sketched in d fuses Majorana
fermions into either the vacuum or a finite-energy quasiparticle.

length Lgate of the wire.When a given gate locally tunes the chemical
potential across |µ| = µc, a finite excitation gap Egap ⇥ h̄v⇡/Lgate
remains. (Roughly, the gate creates a potential well that supports
only k larger than ⇥⇡/Lgate.) Assuming gµB|Bz |/2 ⇥ 2|⇧| and
h̄u⇥ 0.1 eVÅ yields a velocity v ⇥ 104 m s�1; the gap for a 0.1 µm
wide gate is then of order 1 K. We consider this a conservative
estimate—heavy-element wires such as InSb and/or narrower gates
could generate substantially larger gaps.

Local gates allow Majorana fermions to be transported, created,
and fused, as outlined in Fig. 2. As one germinates pairs of Majorana
fermions, the ground state degeneracy increases, as does our capac-
ity to topologically store quantum information. Specifically, 2nMa-
joranas generate n ordinary zero-energy fermions, with occupation
numbers that specify topological qubit states. Adiabatically braiding
the Majorana fermions to manipulate these qubits, however, is
impossible in a single wire. Thus we now turn to the simplest
arrangement permitting exchange—the T-junction of Fig. 3.

Majorana braiding and non-Abelian statistics
First, we explore the properties of the junction where the wires in
Fig. 3 meet (see the Supplementary Information for more details).
It is instructive to view the T-junction as three segments meeting
at a point. When only one segment realizes a topological phase, a
single zero-energy Majorana fermion exists at the junction. When
two topological segments meet at the junction, as in Fig. 3a and
b, generically no Majorana modes exist there. To see this, imagine
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Figure 3 |A T-junction provides the simplest wire network that enables
meaningful adiabatic exchange of Majorana fermions. Using the methods
of Fig. 2, one can braid Majoranas bridged by either a topological region
(dark blue lines) as in a–d, or a non-topological region (light blue lines) as
in e–h. The arrows along the topological regions in a–d are useful for
understanding the non-Abelian statistics, as outlined in the main text.

decoupling the topological segments so that two nearby Majorana
modes exist at the junction; restoring the coupling generically
combines theseMajoranas into an ordinary, finite-energy fermion.

As an illustrative example, consider the setup of Fig. 3a and
model the left and right topological segments byKitaev’smodelwith
µ = 0 and t = |⇧| in equation (1). (For simplicity we exclude the
non-topological vertical wire in Fig. 3a.) Suppose furthermore that
⇤ = ⇤L/R in the left/right chains and that the fermion cL,N at site N
of the left chain couples weakly to the fermion cR,1 at site 1 of the
right chain via H⌅ = �⌅(cL,N †cR,1 +h.c .). Using equation (2), the
Majoranas at the junction couple as follows,

H⌅ ⇥ � i⌅
2
cos

�
⇤L �⇤R

2

⇥
� L
B,N� R

A,1 (6)

and therefore generally combine into an ordinary fermion23.
An exception occurs when the regions form a ⇡-junction—
that is, when ⇤L � ⇤R = ⇡—which fine-tunes their coupling
to zero. Importantly, coupling between end Majoranas in the
semiconductor context is governed by the same⇤L�⇤R dependence
as in equation (6) (refs 21,22).

Finally, when three topological segments meet, again only
a single Majorana mode exists at the junction without fine-
tuning. Three Majorana modes appear only when all pairs of
wires simultaneously form mutual ⇡ junctions (which is possible
because the superconducting phases are defined with respect to
a direction in each wire; see the Supplementary Information).
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Braiding of 
Majoranas in 

T-junctions shows 
non-Abelian 
exchange statistics.
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How about exchange in 1D structures?
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Non-Abelian anyons promise to reveal spectacular features of quantum mechanics that could ultimately
provide the foundation for a decoherence-free quantum computer. A key breakthrough in the pursuit
of these exotic particles originated from Read and Green’s observation that the Moore-Read quantum
Hall state and a (relatively simple) two-dimensional pþ ip superconductor both support so-called Ising
non-Abelian anyons. Here, we establish a similar correspondence between the Z3 Read-Rezayi quantum
Hall state and a novel two-dimensional superconductor in which charge-2e Cooper pairs are built from
fractionalized quasiparticles. In particular, both phases harbor Fibonacci anyons that—unlike Ising
anyons—allow for universal topological quantum computation solely through braiding. Using a variant of
Teo and Kane’s construction of non-Abelian phases from weakly coupled chains, we provide a blueprint for
such a superconductor using Abelian quantum Hall states interlaced with an array of superconducting
islands. Fibonacci anyons appear as neutral deconfined particles that lead to a twofold ground-state
degeneracy on a torus. In contrast to a pþ ip superconductor, vortices do not yield additional particle
types, yet depending on nonuniversal energetics can serve as a trap for Fibonacci anyons. These results
imply that one can, in principle, combine well-understood and widely available phases of matter to realize
non-Abelian anyons with universal braid statistics. Numerous future directions are discussed, including
speculations on alternative realizations with fewer experimental requirements.
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I. INTRODUCTION

The emergence of anyons that exhibit richer exchange
statistics than the constituent electrons and ions in a
material is among the most remarkable illustrations of
“more is different.” Such particles fall into two broad
categories: Abelian and non-Abelian. Interchanging
Abelian anyons alters the system’s wave function by a
phase eiθ that is intermediate between that acquired for
bosons and fermions [1,2]. Richer still are non-Abelian
anyons, whose exchange rotates the system’s quantum state
among a degenerate set of locally indistinguishable ground
states produced by the anyons [3–13]. The latter variety
realizes the most exotic form of exchange statistics that

nature in principle permits, which by itself strongly
motivates their pursuit. Non-Abelian anyons are further
coveted, however, because they provide a route to fault-
tolerant topological quantum computation [14–18]. Here,
qubits are embedded in the system’s ground states and, by
virtue of non-Abelian statistics, manipulated through anyon
exchanges. The nonlocality with which the information is
stored and processed elegantly produces immunity against
decoherence stemming from local environmental perturba-
tions. One thereby sidesteps the principal bottleneck facing
most quantum-computing approaches, but does so at the
expense of introducing a rather different challenge: iden-
tifying suitable platforms for non-Abelian excitations.
The quantum Hall effect catalyzed numerous break-

throughs in the search for anyons in physical systems
[18,19]. Quantum Hall states supporting fractionally
charged Abelian anyons are, by now, widely believed to
surface in a myriad of settings, including GaAs [20],
graphene [21,22], oxide interfaces [23,24], and CdTe
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analogous to a spinless pþ ip superconductor (which
realizes short-ranged entanglement) or rather an intrinsic
non-Abelian quantum Hall system (which exhibits true
topological order)? Interestingly, although superconductiv-
ity plays a key role microscopically for our construction,
we argue that the Fibonacci phase is actually topologically
ordered with somewhat “incidental” order-parameter phys-
ics. We indeed show that Fibonacci anyons appear as
deconfined quantum particles, just like in the Z3 Read-
Rezayi state, leading to a twofold ground-state degeneracy
on a torus that is the hallmark of true topological order.
Moreover, superconducting vortices do not actually lead to
new quasiparticle types, in sharp contrast to a pþ ip
superconductor where vortices provide the source of Ising
anyons. In this sense, the fact that the Fibonacci phase
exhibits an order parameter is unimportant for its universal
topological physics. Vortices can, however, serve as one
mechanism for trapping Fibonacci anyons—depending on
nonuniversal energetics—and thus might provide a route to
manipulating the anyons in practice. Section VI provides a
topological quantum field theory interpretation of the
Fibonacci phase that sheds light on the topological order
present and establishes a connection between our con-
struction and that of Refs. [90,91].
Figure 1 summarizes our main results for the ν ¼ 1 and

ν ¼ 2=3 architectures as well as their relation to “intrinsic”
non-Abelian quantum Hall states. (For a more complete
technical summary, see the beginning of Sec. VIII.) On a
conceptual level, it is quite remarkable that a phase with
Fibonacci anyons can emerge in simple Abelian quantum
Hall states upon breaking charge conservation by judi-
ciously coupling to ordinary superconductors. Of course,
experimentally realizing the setup considered here will be
very challenging— certainly more so than stabilizing Ising
anyons. It is worth, however, providing an example that
puts this challenge into proper perspective. As shown in
Ref. [98], a 128-bit number can be factored in a fully fault-
tolerant manner using Shor’s algorithm with ≈103
Fibonacci anyons. In contrast, performing the same com-
putation with Ising anyons would entail much greater
overhead since the algorithm requires π=8 phase gates that
would need to be performed nontopologically and then
distilled, e.g., according to Bravyi’s protocol [99]. For a
π=8 phase gate with 99% fidelity, the scheme analyzed in
Ref. [98] requires ≈109 Ising anyons to factor a 128-bit
number [100]. Thus, overcoming the nontrivial fabrication
challenges involved could prove enormously beneficial for
quantum-information applications. In this regard, inspired
by recent progress in Majorana-based systems, we are
optimistic that it should similarly be possible to distill the
architecture we propose to alleviate many of the practical
difficulties toward realizing Fibonacci anyons. Section VIII
proposes several possible simplifications—including alter-
nate setups that do not require superconductivity—along
with numerous other future directions that would be

interesting to explore. The abundance of systems known
to host Abelian fractional quantum Hall phases and the
large potential payoff together provide strong motivation
for further pursuit of this avenue toward universal topo-
logical quantum computation.

II. TRIAL APPLICATION: pþ ip
SUPERCONDUCTIVITY FROM THE INTEGER

QUANTUM HALL EFFECT

The first proposal for germinating Ising anyons in an
integer quantum Hall system was introduced by Qi,
Hughes, and Zhang [92]; these authors showed that in
the vicinity of a plateau transition, proximity-induced
Cooper pairing effectively generates spinless pþ ip
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+ charged boson
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FIG. 1. Abelian quantum Hall states interlaced with an array of
superconducting islands (left column) realize analogues of exotic
non-Abelian quantum Hall states (right column). The interface
between the superconducting regions and surrounding Abelian
quantum Hall fluids supports chiral modes similar to those on the
right, but without the bosonic charge sector. (We suppress the
edge states at the outer boundaries of the Abelian quantum Hall
states for simplicity.) Solid circles denote deconfined non-
Abelian excitations, while open circles connected by dashed
lines represent confined h=2e superconducting vortices. Quasi-
particle charges are also listed for the non-Abelian quantum Hall
states. In (a), σ particles represent Ising anyons, which in the
pþ ip phase on the left correspond to confined vortex excita-
tions. In (b), ε is a Fibonacci anyon that exhibits universal braid
statistics. The superconducting Fibonacci phase is topologically
ordered and supports deconfined ε particles—similar to the Read-
Rezayi state. Vortices in this nontrivial superconductor do not
lead to new quasiparticle types, but can, in principle, trap
Fibonacci anyons and/or electrons.
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Conclusions

• Pursuing an ideal of simplicity and 
mathematical elegance Majorana predicted 
in 1938 a new type of a particle identical 
to its antiparticle.


• After 75 years it remains unclear if 
neutrino realizes such Majorana fermion; 
experiments are ongoing.


• It appears likely that Majorana fermions 
have been realized in solid state devices.


• They obey non-Abelian exchange 
statistics and could represent platforms for 
a future quantum computer.

conductance. Above ~400 mT, we observe a pair
of peaks. The color panel in Fig. 2B provides an
overview of states and gaps in the plane of energy
and B field from –0.5 to 1 T. The observed sym-
metry around B = 0 is typical for all of our data

sets, demonstrating reproducibility and the ab-
sence of hysteresis. We indicate the gap edges
with horizontal green dashed lines (highlighted
only for B < 0). A pair of resonances crosses
zero energy at ~0.65 Twith a slope on the order

of EZ (highlighted by orange dotted lines). We
have followed these resonances up to high bias
voltages in (20) and identified them as Andreev
states bound within the gap of the bulk NbTiN
superconducting electrodes (~2 meV). In con-
trast, the ZBP sticks to zero energy over a range
of DB ~ 300mTcentered around ~250mT. Again
at ~400 mT, we observe two peaks located at
symmetric, finite biases.

To identify the origin of these ZBPs, we need
to consider various options including the Kondo
effect, Andreev bound states, weak antilocal-
ization, and reflectionless tunneling versus a
conjecture of Majorana bound states. ZBPs due
to the Kondo effect (24) or Andreev states bound
to s-wave superconductors (25) can occur at
finite B; however, with changing B, these peaks
then split and move to finite energy. A Kondo
resonance moves with 2EZ (24), which is easy to
dismiss as the origin for our ZBP because of the
large g factor in InSb. (Note that even a Kondo
effect from an impurity with g = 2 would be dis-
cernible.) Reflectionless tunneling is an enhance-
ment of Andreev reflection by time-reversed
paths in a diffusive normal region (26). As in
the case of weak antilocalization, the resulting
ZBP is maximal at B = 0 and disappears when
B is increased; see also (20). We thus conclude
that the above options for a ZBP do not provide
natural explanations for our observations. We
are not aware of any mechanism that could ex-
plain our observations, besides the conjecture of
a Majorana.

To further investigate the zero-biasness of
our peak, we measured gate voltage depend-
ences. Figure 3A shows a color panel with volt-
age sweeps on gate 2. The main observation is
the occurrence of two opposite types of behav-
ior. First, we observe peaks in the density of
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Fig. 2. Magnetic field–dependent spectroscopy. (A) dI/dV versus V at 70 mK
taken at different B fields (from 0 to 490 mT in 10-mT steps; traces are offset
for clarity, except for the lowest trace at B = 0). Data are from device 1.
Arrows indicate the induced gap peaks. (B) Color-scale plot of dI/dV versus V

and B. The ZBP is highlighted by a dashed oval; green dashed lines indicate
the gap edges. At ~0.6 T, a non-Majorana state is crossing zero bias with a
slope equal to ~3 meV/T (indicated by sloped yellow dotted lines). Traces in
(A) are extracted from (B).
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Fig. 3.Gate-voltage dependence. (A) A 2D color plot of dI/dV versus V and voltage on gate 2 at 175 mT
and 60 mK. Andreev bound states cross through zero bias, for example, near –5 V (yellow dotted lines).
The ZBP is visible from –10 to ~5 V (although in this color setting, it is not equally visible everywhere).
Split peaks are observed in the range of 7.5 to 10 V (20). In (B) and (C), we compare voltage sweeps on
gate 4 for 0 and 200 mT with the ZBP absent and present, respectively. Temperature is 50 mK. [Note
that in (C) the peak extends all the way to –10 V (19).] (D) Temperature dependence. dI/dV versus V at
150 mT. Traces have an offset for clarity (except for the lowest trace) and are taken at different
temperatures (from bottom to top: 60, 100, 125, 150, 175, 200, 225, 250, and 300 mK). dI/dV outside
the ZBP at V = 100 meV is 0.12 T 0.01·2e2/h for all temperatures. A FWHM of 20 meV is measured
between the arrows. All data in this figure are from device 1.
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 “Majorana had greater gifts than 
anyone else in the world. 
Unfortunately he lacked one quality 
which other men generally have: 
plain common sense.” 

Enrico Fermi

On March 27, 1938 Majorana 
boarded a ship from Palermo to 
Naples and was never seen again. 
To this date, his disappearance  at 
the age of 32 remains a mystery. 
His legacy endures.


