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Mott physics and band topology in materials with
strong spin–orbit interaction
Dmytro Pesin1,2*† and Leon Balents2

Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band
structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that
spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking
Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic
and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing
the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the
topological band insulator is transformed into a ‘topologicalMott insulator’ phase having gapless surface spin-only excitations.
The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically
ordered state at still larger electron–electron interaction.

The spin–orbit interaction (SOI), although apparently a
‘weak’ relativistic correction to the Schrödinger equation
(outside high-energy physics), is coming increasingly to

the fore in modern condensed-matter physics. The discovery of
topological band insulators (TBIs) in theory1–4 and experiment5,6
has revealed a surprising omission in the ‘textbook’ Bloch theory
of the electronic structure of weakly correlated solids. In these
remarkable materials, strong spin–orbit interactions allow a non-
trivial topology of the electron bands, resulting in protected
‘helical’ edge and surface states in two- and three-dimensional
systems. Many other interesting phenomena, including quantum
number fractionalization and magneto-electric effects, have been
predicted to occur in these systems, and are the subjects of a
growing experimental effort. In parallel, strong SOIs have been
identified in a growing variety of Mott insulators, in which the
insulating behaviour is driven by electron correlation rather than
band structure. For instance, SOIs are probably responsible for the
large Wilson ratios observed in many frustrated magnets at low
temperature7,8, and may be the driving force for the formation
of a ‘spin–orbital liquid’ in some Fe spinels9. They have been
experimentally shown to control the orbital state in the Ir oxide
Sr2IrO4 using resonant X-ray scattering10. A natural question is
how these two classes of phenomena are connected—how does a
material progress fromweak to strong correlation with strong SOIs?
This is the subject of theMott transitionwith strong SOIs.

In the search for strong SOIs, one is driven to consider materials
based on heavy atoms (as SOI scales with atomic number as Z 4). So
far, the experimental examples of topological insulators have been
based on atoms (Hg and Bi) in which the active electrons closest to
the Fermi energy inhabit s and p orbitals, which are generally weakly
correlated. However, strong spin–orbit coupling and electron
correlation may be expected in compounds involving d electrons.
Especially in 5d transition metals, correlation effects are often of
weak or intermediate strength, making them perhaps competitive
with those of the SOI and band structure. Owing to the surge of
activity in Ir-based transition-metal oxides7,10–15, we choose one of
these as our model system, and study a simple phenomenological
Hamiltonian for the Mott transition in Ir pyrochlores. We will
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see that this crystal structure naturally fosters TBI physics in the
weak-correlation limit, and therefore enables a study of the most
interesting regimes of theMott transitionwith strong SOIs.

Our main results are as follows. Most importantly, we find
that Mott correlations enhance the effects of SOIs, as a result of
the suppression of effective bandwidth. This leads to increased
stability of the topological insulator state with interactions. In
addition, we suggest the existence of an intermediate topological
Mott insulator (TMI) state, between the TBI and the familiar Mott
insulating phases at stronger interactions. The TMI phase may be
regarded as a quantum spin-liquid state, in which the electrons are
effectively spin–charge separated, and neutral fermionic spin-1/2
spinons are deconfined. The non-trivial band topology of the TBI is
transferred to the spinons, which are thereby gapped in the bulk
but gapless at the surface. These results are summarized in the
phase diagram in Fig. 1.

Model
We begin by constructing a minimal microscopic model for the
Mott transition in the Ir-based pyrochlore oxides, A2Ir2O7, where
A is assumed to be an inert ion in the 3+ state. We, therefore,
consider Ir4+ ions on the pyrochlore lattice, which is viewed as the
face-centred cubic latticewith a tetrahedral basis, Fig. 2a. Each Ir ion
is surrounded by an oxygen octahedron, Fig. 2b. In general, these
octahedra are distorted, dependent on the difference of the oxygen
displacement parameter x from the ideal value of 5/16. We neglect
this small distortion (of 5 and 8 per cent for A=Pr,Eu respectively)
here, in which case the Ir electrons experience approximately cubic
Oh symmetry, and the crystal field splits the five d-orbital states
into an (upper) eg doublet and a (lower) t2g triplet. The value of
the cubic crystal-field splitting is assumed large compared with the
Hund exchange energy; thus, the latter is neglected. The on-site
spin–orbit interaction is thus taken to act within the t2g manifold.
In local axes bound to the oxygen octahedron, the t2g orbitals are
dyz ,dzx and dxy . In the Supplementary Information we present the
rotation matrices that turn the cubic axes into the local octahedral
ones at each Ir site. The axes themselves are not shown in Fig. 2
for reasons of clarity.
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Figure 1 | Phase diagram based on the slave-rotor approximation and
strong coupling limit, as a function of Hubbard repulsion U and
spin–orbit coupling � (relative to hopping t). The four main phases
occurring for moderately strong electron–electron repulsion are the
metallic, the TBI, the TMI and the gapless Mott insulator (GMI) phases.
The dashed line denotes a zero-gap semiconductor state resulting from an
‘accidental’ gap closing. The dotted line schematically demarcates the
large-U region, where magnetic ordering is expected. As discussed in the
main text, long-range Coulomb interactions are expected to induce an
excitonic region in the vicinity of the metal–TBI boundary shown here.

Now consider the SOI, denoting its strength by �. It is well
known that, projected within the t2g manifold, the orbital angular
momentum operator is equal to minus the usual spin-one angular
momentum operator L (ref. 16). Thus, we may effectively consider
the pseudo-total angular momentum J = L+ S, which commutes
with the SOI. The multiplet structure for the usual `=1 states is in-
verted, and the t2g manifold splits into a j=1/2 doublet with energy
�, and a j = 3/2 quadruplet with energy ��/2. We will work in the
local diagonal basis of the j eigenstates, and introduce a single label
↵ such that ↵ = 1,2 and ↵ = 3···6 denote the doublet and quadru-
plet, respectively, with orbital energy "↵ = � for the doublet and
"↵ = ��/2 for the quadruplet. The specific forms of the wavefunc-
tions of these states are given in the Supplementary Information.

We assume that hopping between nearest-neighbour Ir ions
is accomplished through the oxygen atoms nearest to a given
pair, Fig. 2b. In reality, this is not necessarily the case17. However,
our assumption minimizes the number of free parameters, and
is resilient to perturbations that are not too strong. The model
with oxygen-mediated hopping is preferable, as it contains a single
parameter determining the hopping strength: the hopping integral
between Ir t2g states and O p orbitals (Vpd⇡ in the terminology
of ref. 18). Integrating over the oxygens, and taking the simplest
on-site Coulomb interaction involving only the total charge, we
arrive at the Hubbard Hamiltonian,

H =
X

Ri↵

("↵ �µ)d†
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X
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↵↵0

T ii0
↵↵0d†

Ri↵dR0 i0↵0
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2
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X
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!2

(1)

where R and i label the sites of the Bravais lattice and the tetrahedral
basis and nd = 5 is the number of 5d electrons on each Ir4+ ion.
The strength of hopping is parameterized by a single energy scale
t /V 2

pd⇡/�, where � is the energy difference between the Ir d and
O p states. The procedure to obtain the dimensionless hopping
matrices T ii0

↵↵0 , arising from the Ir–O–Ir hopping path, taking into
account the rotation between the local cubic axes of each Ir ion, is
given in the Supplementary Information.

Band structure
The Hamiltonian (1) contains two dimensionless parameters: �/t
and U/t , which define the phase diagram in Fig. 1. It is instructive
first to consider various simple limits. For U = 0, we have a
free-electron model, which is of course exactly soluble. Owing to
inversion symmetry, one in general obtains 12 doubly degenerate
bands. For small �/t , these overlap at the Fermi energy and one ob-
tains a metal. For large �/t , the upper four bands originating from
the j = 1/2 doublet become well-separated from the lower eight
bands. As there are four holes per unit cell, the upper four bands are
half-filled in total. On inspection, we can see (Fig. 3) that they show
a bandgap, indicating the formation of a band insulator at large�.

As shown by Fu and Kane19, one can determine the band topol-
ogy of an insulator with inversion symmetry either from the parity
of theHamiltonian eigenstates at time-reversal-invariantmomenta,
or from the number of Dirac points on the surface of the insulator.
Applying the first criterion (see Supplementary Information), we
find that the large �/t state is a pure ‘strong’ TBI of the electrons
(the weak Z2 invariants vanish, consistent with cubic symmetry).
We also calculated the surface-state spectrum (Fig. 4), which shows
the required odd number of intersections with the Fermi level on
passing between time-reversal-invariant surfacemomenta.

The behaviour for general �/t is as follows. For �/t < 2.8, one
obtains a metallic state, whereas for �/t > 2.8 the bands separate at
the Fermi energy. For almost all of this range of large �/t , the system
is a (strong) TBI. However, an ‘accidental’ closing of the bandgap
occurs at �/t ⇡ 3.3, at which point it is a zero-gap semiconductor
with eight Dirac points located along the h111i directions in
reciprocal space. As the number of these Dirac points is even, there
is no change in band topology resulting from the gap closure.

Strong coupling limit
Now consider large U/t . In this limit, one has a Mott insulator,
and the Hamiltonian is effectively projected into the space of
one hole per Ir site, and the system is described by a spin–orbit
(Kugel–Khomskii type) model. Superexchange leads to spin (and
orbital) exchange of order J ⇠ t 2/U ⌧ t . We see that in this
limit SOI is weak only if � ⌧ J ⌧ t . Thus, the strong SOI regime
is greatly enhanced with increasing correlations, as the relevant
‘bandwidth’ for large U is exchange rather than hopping. As the
general spin–orbital Hamiltonian is cumbersome, and relevant only
for very weak SOI, we will focus only on the strong SOI regime.
Here, only the half-filled doublet at each site is relevant, and the
effective Hamiltonian is of Heisenberg spin-exchange type, with
an effective spin 1/2 at each site. The derivation of the low-energy
Hamiltonian by second-order degenerate perturbation theory is
standard. It is customary to write the resulting Hamiltonian as a
sum of isotropic exchange, Dzyaloshinskii–Moriya and anisotropic
exchange parts (suppressing the Bravais lattice indexR for brevity):

Hspin = 4t 2

U

X

ii0


� 19
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+ JSiSi0 +Dii0 ·Si ⇥Si0 +Si·
$
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�
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The convention to make the choice of Dii0 unique is that i0 > i. As
all D and � terms are related by symmetry, it is enough to specify
them for only one bond:
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I. Surface states of 3D Topological 
Insulators

Topological classification of 3D band insulators contains 
a surprise: in addition to the expected 3 `layered’ 
invariants there exists a 4th, uniquely 3-dimensional 
`strong invariant’ [Moore & Balents (2007); Fu, Kane & Mele (2007)


Prediction: “Strong topological insulator (STI)”: bulk 
insulator with gapless Dirac surface states.

e
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�
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STI



All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.
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FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.
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Surface Dirac cone seen

by ARPES in Bi2Se3 crystals
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Hsieh et al, Nature 2009

Zhang et al, Nature Phys. 2009, 
(prediction)

All key properties of topological states have been
demonstrated for Bi2Se3 which has the simplest Dirac
cone surface spectrum and the largest band gap. In
Bi2Te3 the surface states exhibit large deviations from a
simple Dirac cone !Fig. 14" due to a combination of
smaller band gap !0.15 eV" and a strong trigonal poten-
tial !Chen et al., 2009", which can be utilized to explore
some aspects of its surface properties !Fu, 2009; Hasan,
Lin, and Bansil, 2009". The hexagonal deformation of
the surface states is confirmed by scanning tunneling mi-
croscopy !STM" measurements !Alpichshev et al., 2010";
Fig. 14. Speaking of applications within this class of ma-
terials, Bi2Te3 is already well known to materials scien-
tists working on thermoelectricity. It is a commonly used
thermoelectric material in the crucial engineering re-
gime near room temperature.

Two defining properties of topological insulators—
spin-momentum locking of surface states and ! Berry
phase—can be clearly demonstrated in the Bi2Se3 series.
The surface states are expected to be protected by T
symmetry which implies that the surface Dirac node
should be robust in the presence of nonmagnetic disor-
der but open a gap in the presence of T breaking pertur-
bations. Magnetic impurities such as Fe or Mn on the
surface of Bi2Se3 open a gap at the Dirac point #Figs.
15!a" and 15!b"$ !Xia et al., 2008; Hsieh, Xia, Qian, Wray,
et al., 2009a; Hor, Roushan, et al., 2010; Wray et al.,
2010". The magnitude of the gap is likely set by the in-
teraction of Fe ions with the Se surface and the T break-

ing disorder potential introduced on the surface. Non-
magnetic disorder created via molecular absorbent NO2
or alkali atom adsorption !K or Na" on the surface
leaves the Dirac node intact #Figs. 15!c" and 15!d"$ in
both Bi2Se3 and Bi2Te3 !Hsieh, Xia, Qian, Wray, et al.,
2009a; Xia, Qian, Hsieh, Shankar, et al., 2009". These
results are consistent with the fact that the topological

FIG. 12. !Color online" Helical fermions: Spin-momentum
locked helical surface Dirac fermions are hallmark signatures
of topological insulators. !a" ARPES data for Bi2Se3 reveal
surface electronic states with a single spin-polarized Dirac
cone. !b" The surface Fermi surface exhibits a chiral left-
handed spin texture. !c" Surface electronic structure of Bi2Se3
computed in the local-density approximation. The shaded re-
gions describe bulk states, and the lines are surface states. !d"
Schematic of the spin-polarized surface-state dispersion in
Bi2X3 !1;000" topological insulators. Adapted from Xia et al.,
2008, Hsieh, Xia, Qian, Wray, et al., 2009a, and Xia, Qian,
Hsieh, Wray, et al., 2009.

-0.2

0

-0.4

300K

E
(e

V
)

B

k (Å )x

-1

0 0.1-0.1

Room-Temperature Topological Insulators

k (Å )x

-1

0 0.1-0.1

10K

-0.15 -0.1

E - E (eV)
D

-0.05

E
Dirac

node

A
R

P
E

S
D

O
S

(a
rb

.
u
n
it
s
)

0

1

2

D
O

S

0.0

background

1

2

Half Dirac Gas

kx

ky

Topological Insulator

(a)
(b)

(c) (d)

Bi Se (v =1= / )2 3 0 Θ π

node

Θ

π

axion

=

Γ

k (Å )x

-1

0 0.1-0.1(e)

FIG. 13. !Color online" Room temperature topological order
in Bi2Se3: !a" Crystal momentum integrated ARPES data near
Fermi level exhibit linear falloff of density of states, which
combined with the spin-resolved nature of the states suggest
that a half Fermi gas is realized on the topological surfaces. !b"
Spin-texture map based on spin-ARPES data suggest that the
spin chirality changes sign across the Dirac point. !c" The Dirac
node remains well defined up a temperature of 300 K suggest-
ing the stability of topological effects up to the room tempera-
ture. !d" The Dirac cone measured at a temperature of 10 K.
!e" Full Dirac cone. Adapted from Hsieh, Xia, Qian, Wray, et
al., 2009a.

FIG. 14. !Color online" Hexagonal warping of surface states in
Bi2Te3: ARPES and STM studies of Bi2Te3 reveal a hexagonal
deformation of surface states. Fermi-surface evolution with in-
creasing n-type doping as observed in ARPES measurements.
Adapted from Alpichshev et al., 2010.
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... and by STM in Bi2Te3 

crystals

Alpichshev et al, PRL 2010



Families of 3D topological insulators:

Bi1-xSbx alloys


Bi2Se3, Bi2Te3, Sb2Te3 crystals


ternary Bi2Te2Se2, GeBi2Te3


Heusler compounds (Li2AgSb, NdPtBi, SmPtBi, ...)


chalcogenides (TlBiTe2, TlBiSe2)


pyrochlores (Pr2Ir2O7, Cd2Os207)


perovskites & antiperovskites (Sr3NBi, Sr3NBi)


... more to come?

FIG. 1: Observation of a spin-Helical topological ground state in TlBiSe2. a. Fermi surface topology evolution and
spin vortex configuration through the Dirac point. Spins are drawn schematically (See Fig. 2 for spin polarization data) b.
ARPES measurement over the First surface BZ on TlBiSe2. All features are centered at the Γ̄ point. Measurement is done in
large step (low resolution) because a large momentum range needs to be covered. c. Incident-photo-energy dependence study
of the surface band along Γ̄ − M̄ direction, with spin directions on two branch of the Dirac bands. d. 3D representation of the
dispersion of TlBiSe2.

in other topological materials. Therefore, it would be
important to purify this material to reduce residual bulk
contribution to conductivity. Very recently, it is becom-
ing possible to isolate surface transport from that of the
bulk in other topological insulators [21]. Similar methods
may be applied here.
Spin-integrated angle resolved photoemission spec-

troscopy (ARPES) measurements were performed with
30eV to 60eV photon energy on beamline 12.01 and 10.01
at the Advance Light Source (ALS) in Lawrence Berkeley
Laboratory. Spin-resolved ARPES measurements were
performed at the SIS beamline at the Swiss Light Source
(SLS) using the COPHEE spectrometer with two 40kV
classical Mott detectors and the photon energy of 21eV .
Typical energy resolution was 10meV and about 1% of
the surface Brilliouin Zone (BZ) at Beamline 10 and 12
ALS and 80meV and 3% of the surface BZ at SLS re-
spectively. Samples were cleaved in situ between 10 to
80K at the Chamber pressure less than 5×10−11Torr at
Beamline 10 and 12 at ALS and less than 2×10−10Torr
at SLS respectively, resulting in shiny flat surfaces. Sur-
face and bulk state band calculations were performed for
comparison with the experimental data, using the LAPW
method implemented in the WIEN2K package [27].
The bulk crystal symmetry of TlBiSe2 fixes a hexago-

nal surface Brillouin zone (BZ) for the cleaved (111) sur-
face (Fig. 1b) on which Γ̄ and M̄ are the time reversal

invariant momenta (TRIM) at which Dirac points can oc-
cur. Band structure measurements using ARPES are pre-
sented by scanning over the full BZ, in which all observed
features occur in close proximity to the Γ̄ point. High res-
olution dispersion maps traces a clear single Dirac cone
for TlBiSe2 (see Fig. 1d). The Dirac bands intersect
the Fermi level at 0.116Å, with a particle velocity of
5.2×105m/s along Γ̄ − M̄ and cross EF at 0.1Å along
Γ̄ − K̄ with a velocity of 4.7×105m/s. Due to the bend-
bending effect [16], no band-like feature for bulk states
can be clearly resolved inside the Dirac band. In order
to systematically analyze the surface band structure of
TlBiSe2 and how it could be tuned with bulk doping, we
perform a series of high resolution ARPES measurements
of the constant energy contours at different binding en-
ergies (shown in Fig. 1a). The Fermi contour of TlBiSe2
(constant energy contour at EB = 0.01eV ) is hexago-
nally shaped, demonstrating the hexagonal warping ef-
fect [28]. When the binding energy is increased from the
Fermi level, the effect of the bulk potential vanishes and
the shape of the contour reverts back to a circle. Lower-
ing the binding energy further results in a Fermi surface
of a single Dirac point with no other features. Constant
energy contours below the Dirac point are observed to
consist of the surface Dirac band, with an additional six-
fold symmetric feature extending outside along all Γ̄−M̄
directions.
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consequences of our no-go theorem is that is not possible, in strong interaction models, to solve the notorious species
doubling problem of Dirac fermions on a lattice in a chirally invariant way.
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Abstract

Existence of a  single Dirac fermion on a 2D surface 
appears to violate the 1981 Nielsen-Ninomiya `no-go’ 
theorem

Two Dirac fermions 
located on opposite 

surfaces



Protected by time reversal symmetry
T is Implemented by an untiunitary operator 

� = i�yK, �2 = �1

[H,�] = 0 =� �H(k)��1 = H(�k)

For Bloch Hamiltonians time reversal symmetry implies

This, in turn implies “Kramers degeneracy” at time-reversal 
invariant momenta (TRIM) 

All states at TRIM are doubly degenerate



5

E

k

EF

0/a−π

Conduction Band

Valence Band

Quantum Hall 
State n=1

Insulator n=0

(a) (b)

/a−π

FIG. 2 The interface between a quantum Hall state and an
insulator has chiral edge mode. (a) depicts the skipping cy-
clotron orbits. (b) shows the electronic structure of a semi
infinite strip described by the Haldane model. A single edge
state connects the valence band to the conduction band.

Fermi energy E
F

with a positive group velocity dE/dq
x

=
~v

F

and defines a right moving chiral edge mode.
In the 1980’s related ideas were applied to narrow

gap semiconductors, which can be modeled using a 3D
massive Dirac Hamiltonian(Volkov and Pankratov, 1985;
Fradkin, Dagotto and Boyanovsky, 1986). An interface
where the Dirac mass changes sign is associated with gap-
less 2D Dirac fermion states. These share some similari-
ties with the surface states of a 3D topological insulator,
but as we shall see in section IV.A, there is a funda-
mental di↵erence. In a separate development, Kaplan
(1992) showed that in lattice quantum chromodynamics
4D chiral fermions could be simulated on a 5D lattice
by introducing a similar domain wall. This provided a
method for circumventing the doubling theorem(Nielssen
and Ninomiya, 1983), which prevented the simulation of
chiral fermions on a 4D lattice. Quantum Hall edge states
and surface states of a topological insulator evade similar
doubling theorems.

The chiral edge states in the quantum Hall e↵ect can
be seen explicitly by solving the Haldane model in a semi-
infinite geometry with an edge at y = 0. Fig. 2(b) shows
the energy levels as a function of the momentum k

x

along
the edge. The solid regions show the bulk conduction and
valence bands, which form continuum states and show
the energy gap near K and K0. A single band, describing
states bound to the edge connects the valence band to the
conduction band with a positive group velocity.

By changing the Hamiltonian near the surface the dis-
persion of the edge states can be modified. For instance,
E(q

x

) could develop a kink so that the edge states inter-
sect E

F

three times – twice with a positive group velocity
and once with a negative group velocity. The di↵erence
N

R

� N
L

between the number of right and left moving
modes, however, can not change, and is determined by
the topological structure of the bulk states. This is sum-
marized by the bulk-boundary correspondence:

N
R

�N
L

= �n, (7)

where �n is the di↵erence in the Chern number across
the interface.
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FIG. 3 Electronic dispersion between two boundary Kramers
degenerate points �

a

= 0 and �
b

= ⇡/a. In (a) the num-
ber of surface states crossing the Fermi energy E

F

is even,
whereas in (b) it is odd. An odd number of crossings leads to
topologically protected metallic boundary states.

C. Z2 topological insulator

Since the Hall conductivity is odd under T , the topo-
logically non trivial states described in the preceding sec-
tion can only occur when T symmetry is broken. How-
ever, the spin orbit interaction allows a di↵erent topolog-
ical class of insulating band structures when T symmetry
is unbroken (Kane and Mele, 2005a). The key to under-
standing this new topological class is to examine the role
of T symmetry for spin 1/2 particles.
T symmetry is represented by an antiunitary operator

⇥ = exp(i⇡S
y

/~)K, where S
y

is the spin operator and
K is complex conjugation. For spin 1/2 electrons, ⇥ has
the property ⇥2 = �1. This leads to an important con-
straint, known as Kramers’ theorem, that all eigenstates
of a T invariant Hamiltonian are at least twofold de-
generate. This follows because if a non degenerate state
|�i existed then ⇥|�i = c|�i for some constant c. This
would mean ⇥2|�i = |c|2|�i, which is not allowed be-
cause |c|2 6= �1. In the absence of spin orbit interac-
tions, Kramers’ degeneracy is simply the degeneracy be-
tween up and down spins. In the presence of spin orbit
interactions, however, it has nontrivial consequences.
A T invariant Bloch Hamiltonian must satisfy

⇥H(k)⇥�1 = H(�k). (8)

One can classify the equivalence classes of Hamiltonians
satisfying this constraint that can be smoothly deformed
without closing the energy gap. The TKNN invariant is
n = 0, but there is an additional invariant with two pos-
sible values ⌫ = 0 or 1 (Kane and Mele, 2005b). The fact
that there are two topological classes can be understood
by appealing to the bulk-boundary correspondence.
In Fig. 3 we show plots analogous to Fig. 2 showing the

electronic states associated with the edge of a T invariant
2D insulator as a function of the crystal momentum along
the edge. Only half of the Brillouin zone 0 < k

x

< ⇡/a is
shown because T symmetry requires that the other half
�⇡/a < k < 0 is a mirror image. As in Fig. 2, the shaded
regions depict the bulk conduction and valence bands
separated by an energy gap. Depending on the details
of the Hamiltonian near the edge there may or may not
be states bound to the edge inside the gap. If they are

Trivial surface states

The key observation (by Kane and Mele): 

Topological surface states

Z2 topological classification



Surface states are topologically protected: they cannot 
be destroyed by any T-invariant perturbation.

Topological protection

Pauli matrices in spin space, satisfy

[�i,�j ] = 2i�ijk�k, {�i,�j} = 2�ij

Massless Dirac Hamiltonian

H = v[�ypx � �xpy],

(i�yK)[�ykx � �xky](�i�yK) = �[�ykx � �xky] = H(�k)

Apply T to the surface Dirac Hamiltonian: 



Spectrum: H� = E�, �(r) =
�

��(r)
��(r)

�

Assuming translational invariance take �(r) = eik·r
�

��k
��k

�

Hk = v[�ykx � �xky],

To find the spectrum easy way square the Hamiltonian

H2
k = v2[k2

x + k2
y � (�y�x + �x�y)kxky]

Ek = ±v
�

k2
x + k2

y

�k =
1�
2

�
1

ky±ikx

k

�



To open a gap one needs to add a term

�H = m�z, Ek = ±
�

v2(k2
x + k2

y) + m2

 Gapless surface states are protected by T 

Corresponds to depositing 
a ferromagnet on the 
surface of a TI

However, this necessarily breaks T: 

(i�yK)m�z(�i�yK) = �m�z = ��H(�k)



Massive Dirac Fermion on the
Surface of a Magnetically
Doped Topological Insulator
Y. L. Chen,1,2,3 J.-H. Chu,1,2 J. G. Analytis,1,2 Z. K. Liu,1,2 K. Igarashi,4 H.-H. Kuo,1,2
X. L. Qi,1,2 S. K. Mo,3 R. G. Moore,1 D. H. Lu,1 M. Hashimoto,2,3 T. Sasagawa,4
S. C. Zhang,1,2 I. R. Fisher,1,2 Z. Hussain,3 Z. X. Shen1,2*

In addition to a bulk energy gap, topological insulators accommodate a conducting, linearly dispersed
Dirac surface state. This state is predicted to become massive if time reversal symmetry is broken,
and to become insulating if the Fermi energy is positioned inside both the surface and bulk gaps.
We introduced magnetic dopants into the three-dimensional topological insulator dibismuth triselenide
(Bi2Se3) to break the time reversal symmetry and further position the Fermi energy inside the
gaps by simultaneous magnetic and charge doping. The resulting insulating massive Dirac fermion
state, which we observed by angle-resolved photoemission, paves the way for studying a range of
topological phenomena relevant to both condensed matter and particle physics.

Topological insulators are a state of matter
that may serve as a platform for both fun-
damental physics phenomena and tech-

nological applications, such as spintronics and
quantum information processing. Since their dis-
covery in two-dimensional (2D) HgTe quantum

wells (1, 2), topological insulators have been at
the core of a very active research area (3–11). Re-
cently, a class of 3D compounds—Bi2Te3, Bi2Se3,
and Sb2Te3—were identified (12–14) with the
surface state consisting of a single Dirac cone.
The conducting surface states of topological in-

sulators are immune to localization as long as
the disorder potential does not violate time rever-
sal symmetry (TRS) (4, 5, 9), and one way to
destroy this robust surface metallicity is to break
the TRS by introducing magnetic order (5). In
the bulk, a topological insulator doped with mag-
netic impurities can have a long-range magnetic
order both in the metallic (15, 16) and insulat-
ing (17) phases; on the surface, such a long-range
magnetic order can also be formed independent
of the bulk magnetic ordering, as the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction induced
by the Dirac fermions is generally ferromagnetic
when the Fermi energy (EF) is close to the Dirac
point (18). Both effects can lead to the breaking
of TRS, resulting in a gap opening at the Dirac
point that makes the surface Dirac fermion mas-

1Stanford Institute for Materials and Energy Sciences, SLAC
National Accelerator Laboratory, 2575 Sand Hill Road, Menlo
Park, CA 94025, USA. 2Geballe Laboratory for Advanced Ma-
terials, Departments of Physics and Applied Physics, Stanford
University, Stanford, CA 94305, USA. 3Advanced Light Source,
Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA. 4Materials and Structures Laboratory, Tokyo Institute of
Technology, Kanagawa 226-8503, Japan.

*To whom correspondence should be addressed. E-mail:
zxshen@stanford.edu

Fig. 1. Electronic band structure of undoped
Bi2Se3 measured by ARPES. (A) The bulk conduc-
tion band (BCB), bulk valence band (BVB), and
surface-state band (SSB) are indicated, along with
the Fermi energy (EF), the bottom of the BCB (EB),
and the Dirac point (ED). (B) Constant-energy
contours of the band structure show the SSB
evolution from the Dirac point to a hexagonal
shape (green dashed lines). (C) Band structure
along the K-G-K direction, where G is the center of
the hexagonal surface Brillouin zone (BZ), and the
K and M points [see (D)] are the vertex and the
midpoint of the side of the BZ, respectively (14).
The BCB bottom is ~190 meV above ED and 150
meV below EF. (D) Photon energy–dependent FS
maps (symmetrized according to the crystal
symmetry). Blue dashed lines around the BCB FS
pocket indicate their different shapes.
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sive; indeed, we find that the Dirac gap can be
observed in magnetically doped samples with or
without bulk ferromagnetism (19). Furthermore,
if EF can be tuned into this surface-state gap, an
insulating massive Dirac fermion state is formed;
this state may support many striking topological
phenomena, such as the image magnetic mono-

pole induced by a point charge (20, 21), the half
quantum Hall effect on the surface with a Hall
conductance of e2/2h, and a topological contribu-
tion to the Faraday and Kerr effects (5). In addi-
tion, this state is a concrete realization of the “q
vacuum” state of axion physics in a condensed
matter system (5), and thus has implications for

particle physics and cosmology (22). Finally, a
tunable energy gap at the surface Dirac point pro-
vides a means to control the surface electric trans-
port, which is of great importance for applications.

The insulating massive Dirac fermion state is
challenging to realize, because there are two crit-
ical requirements that must be simultaneously

Fig. 3. Realization of the insulat-
ing massive Dirac fermion state by
simultaneous magnetic and charge
doping. (A) Gap formation at the
Dirac point (caused by magnetic
impurities on the surface) and the
in-gap EF position. The occupied and
unoccupied Dirac cones are shown
in blue and gray, respectively; D is
the energy difference between the
top of the occupied Dirac cone and
EF. (B) ARPES spectra intensity plot
of the band structure along the
K-G-K direction of Mn-doped sam-
ple (Bi0.99Mn0.01)2Se3 showing the
EF inside the surface Dirac gap. Inset: close-up
of the dispersion in the vicinity of EF, indi-
cating a gap between the leading edge of the
SSB and EF. Vertical white dashed line shows
the location of the EDC plotted in (C). (C) Comparison between the G point
EDC (blue) and EF shows a leading-edge gap of 7 meV (EDC on the full energy
scale is plotted in the inset). A reference EDC from a polycrystalline Au sample
whose leading edge, as expected, coincides with EF is shown in red.

Fig. 2. (A and B) A nonmagnetically doped topological insulator with a Dirac
point connecting the upper and lower Dirac cones as in the undoped case. (C)
Band structure along the K-G-K direction of undoped Bi2Se3. Left and right
subpanels show the ARPES spectral intensity plot and a stacking plot of the
energy distribution curves (EDCs), respectively. The red curve in the right
subpanel indicates the EDC at the G point. Inset: EDC at the G point (red),
fitted with a Lorentzian peak (green) on the Shirley background (black); the
total fitting function is shown in blue. The same convention is used in (D),

(G), and (H). (D) Band structure for a Tl-doped sample, (Bi0.9Tl0.1)2Se3. The
Dirac point remains continuous. (E and F) A magnetically doped topological
insulator with a broken Dirac point and a gap separating the upper and
lower Dirac cones. (G and H) Band structure of two Fe-doped samples
from two growth batches with melt composition (Bi0.88Fe0.12)2Se3.7 and
(Bi0.84Fe0.16)2Se3.7, respectively. At the Dirac point, the reduced spectral
intensity (left subpanels) and the twin-peak structure in the EDCs (right
subpanels) indicate a gap formation.
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Science, 2010

• Gap opens without bulk magnetic ordering.

• Could there be surface ordering?

• Could disordered magnetic moments open a gap? 



Magnetized surface of a TI

turns out to be a quantum Hall 

insulator with

�xy =
e2

2h

(experimentally untested)

II. Exact quantization 
in solids

• Fractional quantum Hall effect in 

  *non-interacting* system!



Exact quantization in solids

 quantum Hall effect

 superconductivity

�xy =
e2

h
n

� =
hc

2e
n



KJ =
2e

h

RK =
h

e2

Josephson constant

von Klitzing constant



Chern number or TKNN invariant

(Thouless-Kosterlitz-Nightingale-den Nijs, 1982)

S.S.Chern

�xy =
e2

h
n

“First Chern number” - integer 
topological invariant for filled 
energy bands. Can change only 
when bands touch.

n =
�

bands

1
2�

�

BZ
d2k(�k �Ak)z, Ak = �i�uk|�kuk�



Chern number of a Dirac Hamiltonian

n =
1
2�

�

BZ
d2k (�k �Ak) · ẑ

=
1
2�

�

BZ
d2k

m

2E3
k

=
1
2
sgn(m)

Chern number

is half-integral!

uk =
1�
2

�
��k

�
1�m/Ek�

1 + m/Ek

�
, �k = (ky � ikx)/k

Ak = �i�uk|�kuk� =
1
2

ẑ � k
Ek(m + Ek)



III. Bulk-surface correspondence 

gapless state

STISTI
FM

gapped state The gapped surface state

has quantized Hall 
conductivity

�
xy

=
e2

h

✓
n +

1
2

◆



Laughlin’s flux-insertion argument for 
the magnetized surface states

�(t)�(t)
E

r⇥E = �1
c

@B
@t

Flux insertion produces

Faraday electric field 

...which in turn causes

Hall current

j = �
xy

(E⇥ ẑ)



Integrating the current we find accumulated charge

dQ

dt
= �

�

C
dl n · j = ��xy

�

C
dl · E

�Q = �
xy

��
c

Using Stoke’s theorem and Faraday’s law,  ��E = �1
c

�B
�t

For full flux quantum this becomes

�Q = �
xy

�0

c
=

✓
n +

1
2

◆
e



A solenoid carrying the full flux quantum

can be removed by a gauge transformation:


FRACTIONALLY CHARGED EXCITATIONS!

�0

2⇡

This is the essence of Laughlin’s 
argument: 

Physically, electron encircling such 
flux tube acquires Aharonov-Bohm 
phase     which is invisible to it.2⇡



Excitations of a massive Dirac

Hamiltonian are electron-hole

pairs which are charge neutral.

What gives?

There should be no fractionally 
charged quasiparticles in this 
weakly interacting system!



The Wormhole effect:

Flux tube inserted in a STI

carries topologically protected

gapless fermionic modes when

� =
hc

2e
=

1
2
�0

The surface charge implied by

the Laughlin argument can 

escape through the bulk along the wormhole thus 
avoiding the fractional charge paradox.



Solve Dirac equation for the surface states along 
a hole threaded by flux

� �= 1
2

� =
1
2

[see arXiv:0910.1338] 

H =
1
2
v
�
�� · n + n · (p� �) + (p� �) · n

�

The spectrum is

Ekl = ±v�

�

k2 +
(l + 1

2 � �)2

R2
; � =

�
�0



Lattice model for a topological 
insulator

We consider a simple toy model

for a topological insulator on 

the 3D cubic lattice. A minimal

model will have 2 orbitals

per lattice site

HSO = i�
�

j,µ

�†
j�z�µ�j+µ + h.c.,

Hcd = �
�

j

�†
j�x�j � t

�

�ij�

�†
i �x�j + h.c.



STI

flux tubes

The Wormhole effect

� =
�0

4

� =
�0

2

y

x

D
en
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ty



Cube with a magnetized surface

STI

surface
magnetized

flux tube

HS = ��S

�

j�surf

r̂j ·
�
�†

j��j

�



Different configuration: flux tube terminated by a 
magnetic monopole

flux tube

B

“Witten effect”



 

 

Figure 1. Schematics of the Bi2Te3 bandstructure, the surface state modes and expected 

magnetoconductance oscillation patterns in topological insulator nanoribbons. (a) Schematic band 

diagram of bulk Bi2Te3. The bulk conduction band (CB), topological surface states (TSS) and bulk 

valence band (VB) are labeled. Note the Dirac point (DP) is buried inside the VB, thus only n-type TSS 

are accessible inside the bulk bandgap. The horizontal and vertical dashed lines mark the minimum Fermi 

energy (𝐸𝐹0, at top of VB) and momentum ( 0
Fk ) to observe surface state conduction (conduction by the 

bulk valence band states would dominate for lower EF or kF). The charge neutrality point (CNP) also 

occurs close to 𝐸𝐹0. (b) Schematic of a topological insulator nanoribbon (TINR), where k// and k+ label 

TSS momentum parallel and perpendicular to the TINR axis. The applied axial magnetic field (B) is 

depicted by a red arrow. (c) Schematic of the (circumferentially quantized) TINR surface state modes or 

surface sub-bands (neglecting bulk bands) depicted for 3 representative axial magnetic fluxes (Φ, in unit 

of magnetic flux quanta Φ0 = h/e) through the NR cross section. For each Φ, the multiple surface state 

modes (sub-bands) arise from discrete quantized k+ (see Eq. 1). (d) Schematic of the expected 

magnetoconductance (ΔG(B)) oscillation pattern at two different types of EF positions (exemplified by 

the blue and red horizontal dashed lines in c) giving rise to 0-Aharonov-Bohm oscillations (0-ABO) and 

S-ABO, respectively.  

 

 
 

Figure 2. Ambipolar field effect, demonstrating quasi-ballistic conduction, and gate-tunable 0- and 
π- ABOs, demonstrating topological surface state modes in TINRs. (a) Scanning electron microscope 

(SEM) image of a 150 nm wide, 60 nm thick TINR multi-terminal device on SrTiO3 (STO) substrate 

studied in this work. The electrodes are numerically labeled. The orange arrow indicates the direction of 

the B-field applied, along the NR axis. Inset: schematic of the device cross-section. (b) Four-terminal 

conductance (G) vs. back gate voltage (Vg), measured for two different segments of the TINR (between 

voltage probes 3-2, with length 1.6 Pm, and between 4-3, with length 2.8 Pm, respectively). The current I 

= 1 nA is applied between electrodes 6 and 1 (ground). (c) Magnetoconductance (ΔG(B), with a smooth 

background subtracted), in units of e2/h, vs. B-field (top axis, with corresponding magnetic flux Φ in units 

of half-flux-quantum (Φ0/2 = h/2e) in bottom axis) at different Vg’s. Curves are vertically offset for clarity. 

magnetoconductance (ΔG(B)) oscillation pattern at two different types of EF positions (exemplified by 

the blue and red horizontal dashed lines in c) giving rise to 0-Aharonov-Bohm oscillations (0-ABO) and 

S-ABO, respectively.  
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Experimental relevance:



 Exotic correlated surface states

states in topological insulator-superconductor structures.
The large energy scale associated with the energy gap in
Bi2Se3 may provide an advantage, so the required tem-
perature scale will be limited only by the supercon-
ductor.

2. Majorana fermions on topological insulators

Consider an interface between a topological insulator
and an s wave superconductor. Due to the superconduct-
ing proximity effect, Cooper pairs may tunnel from the
superconductor to the surface, leading to an induced su-
perconducting energy gap in the surface states. The re-
sulting 2D superconducting state is different from an or-
dinary superconductor because the surface states are not
spin degenerate and contain only half the degrees of
freedom of a normal metal. The superconducting state
resembles the spinless px+ ipy topological supercon-
ductor discussed in Sec. II.D, which is also based on a
spin nondegenerate Fermi surface. Unlike the px+ ipy
superconductor, the surface superconductor does not
violate T symmetry, and its Cooper pairs have even par-
ity. The minus sign required by Fermi statistics is sup-
plied by the ! Berry phase of the surface states. Like the
px+ ipy superconductor, the surface superconductor will
have a zero energy Majorana state bound to a vortex
!Fu and Kane, 2008". Similar zero modes were later
found for superconducting graphene !Ghaemi and Wilc-
zek, 2007; Bergman and Le Hur, 2009", though those
modes were intrinsically doubled. Undoubled Majorana
bound states were found earlier by Jackiw and Rossi
!1981" in a related field theory model that had an extra
chiral symmetry. Interestingly, the Majorana states on a
topological insulator emerge as solutions to a 3D BdG
theory, so there is a sense in which their non-Abelian
statistics is inherently three dimensional !Teo and Kane,
2010".

Majorana states can, in principle, be engineered and
manipulated using junctions of superconductors on the
surface of a topological insulator !Fu and Kane, 2008". If
the phases on three superconductors that meet at a tri-
junction #Fig. 20!b"$ are arranged such that !"1 ,"2 ,"3"
= !0,2! /3 ,4! /3", then a vortex is simulated, and a zero
mode will be bound to the junction. If the phases are
changed, the zero mode cannot disappear until the en-
ergy gap along one of the three linear junctions goes to
zero. This occurs when the phase difference across the
junction is !. At this point the Majorana bound state
moves to the other end of the linear junction. Combin-
ing these trijunctions into circuits connected by linear
junctions could then allow for the create-braid-measure
protocol discussed in Sec. V.B.1 to be implemented. The
state of two Majorana modes brought together on a lin-
ear junction can be probed by measuring the supercur-
rent across that junction.

There are many hurtles to overcome before this am-
bitious proposal can be realized. The first step is finding
a suitable superconductor that makes good contact with
a topological insulator. Probing the signatures of Majo-
rana fermions and non-Abelian statistics will require

ingenuity—what makes them good for quantum com-
puting makes them hard to measure. A first step would
be to detect the Majorana state at a vortex, antidot, or
trijunction by tunneling into it from a normal metal. A
signature of the zero mode would be a zero-bias
anomaly, which would have a characteristic current-
voltage relation !Bolech and Demler, 2007; Law, Lee,
and Ng, 2009".

Another venue for Majorana fermions on a topologi-
cal insulator surface is a linear interface between super-
conducting and magnetically gapped regions !Fu and
Kane, 2008; Tanaka, Yokoyama, and Nagaosa, 2009;
Linder et al., 2010". This leads to a 1D chiral Majorana
mode, analogous to the edge state of a 2D topological
superconductor #Fig. 4!e"$. This can be used to construct
a novel interferometer for Majorana fermions !Akh-
merov, Nilsson, and Beenakker, 2009; Fu and Kane,
2009b". Figure 20!c" shows a superconducting island sur-
rounded by magnetic regions with a magnetic domain
wall. The chiral Dirac fermions on the magnetic domain
wall incident from the left split into two chiral Majorana
fermions on opposite sides of the superconductor and
then recombine. If the superconductor encloses a flux
#=h /2e, then the Majorana fermions pick up a relative
minus sign analogous to the Aharonov-Bohm effect.
This has the effect of converting an incident electron
into an outgoing hole, with a Cooper pair of electrons
absorbed by the superconductor. This could be observed
in a three terminal transport setup.

Majorana bound states can also be engineered at the
edge of a 2D quantum spin Hall insulator utilizing mag-
netic and superconducting energy gaps #Fig. 20!d"$ !Nils-
son, Akhmerov, and Beenakker, 2008; Fu and Kane,
2009a". This and other geometries can, in principle, be
used to test the inherent nonlocality of Majorana fer-
mion states !Fu, 2010"
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FIG. 20. !Color online" Majorana fermions on topological in-
sulators. !a" A superconducting vortex or antidot with flux
h /2e on a topological insulator is associated with a Majorana
zero mode. !b" A superconducting trijunction on a topological
insulator. Majorana modes at the junction can be controlled by
adjusting the phases "1,2,3. 1D chiral Majorana modes exist at
a superconductor-magnet interface on a topological insulator.
!c" A 1D chiral Dirac mode on a magnetic domain wall that
splits into two chiral Majorana modes around a superconduct-
ing island. When #=h /2e interference of the Majorana modes
converts an electron into a hole. !d" Majorana modes at a
superconductor-magnet junction on a 2D QSHI.
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[Fu & Kane, PRL 2008]
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[Seradjeh, Moore & Franz, PRL 2009]
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Topological insulators: Closing Thoughts

[For review see: Moore, Nature 2010; Hasan & Kane, Rev Mod Phys 2010]

 Time-reversal invariant band insulators with non-trivial band 
structure characterized by a Z2-valued topological invariant. 

 Topologically protected gapless 
surface states, robust to weak non-
magnetic disorder.

Odd # of gapless states

STI Variety of unusual surface 
phenomena: fractional quantum 
Hall effect, Majorana fermions, 
exciton condensate 

 Axion term in the bulk 
electromagnetic response, Witten 
effect, wormhole effect, etc.
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The end


