$\mathsf{Na}_3\mathsf{Ir}_3\mathsf{O}_8$

- a metal by spin-orbit interaction -

Marc Höppner Solid State Spectroscopy MPI for Solid State Research

Vancouver 2015/10/23

lattice

lattice

spin-orbit interaction (soi)

lattice

spin-orbit interaction (soi)

lattice

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

lattice

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

BJ Kim et al. PRL 101, 076402 (2008)

lattice

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

G. Jackeli et al. PRL $102,\ 017205\ (2009)$ BJ Kim et al. Science $323,\ 1329\text{-}1332\ (2009)$

many-body interactions

Ir

lattice

Ir

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

BJ Kim et al. PRL 101, 076402 (2008)

G. Jackeli et al. PRL **102**, 017205 (2009) BJ Kim et al. Science **323**, 1329-1332 (2009)

YK Kim et al. Science 345, 187-190 (2014)

lattice

J. Chaloupka et al. PRL 105, 027204 (2010)

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

G. Jackeli et al. PRL **102**, 017205 (2009) BJ Kim et al. Science **323**, 1329-1332 (2009)

YK Kim et al. Science 345, 187-190 (2014)

lattice

I. I. Mazin et al. PRL 109, 197201 (2012)

J. Chaloupka et al. PRL 105, 027204 (2010)

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

G. Jackeli et al. PRL **102**, 017205 (2009) BJ Kim et al. Science **323**, 1329-1332 (2009)

YK Kim et al. Science 345, 187-190 (2014)

lattice

I. I. Mazin et al. PRL 109, 197201 (2012)

J. Chaloupka et al. PRL 105, 027204 (2010)

Sin Nyak Sin Ny

W. Witczak-Krempa et al. Annu. Rev. CMP 5, 57-82 (2014)

many-body interactions

spin-orbit interaction (soi)

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994)

G. Jackeli et al. PRL **102**, 017205 (2009) BJ Kim et al. Science **323**, 1329-1332 (2009)

YK Kim et al. Science 345, 187-190 (2014)

Na₃Ir₃O₈ T. Takayama et al. Sci. Rep. 4, 6818 (2014) D. Proepper et al. PRL 112, 087401 (2014)

Na₃Ir₃O₈ T. Takayama et al. Sci. Rep. 4, 6818 (2014) D. Proepper et al. PRL 112, 087401 (2014)

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure

Na₃Ir₃O₈ T. Takayama et al. Sci. Rep. 4, 6818 (2014) D. Proepper et al. PRL 112, 087401 (2014)

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure monocrystalline

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure

monocrystalline

 $Na_3^{1+}Ir_3^{4.33+}O_8^{2-} d^{4.67}$ non-integer Ir valence

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure

monocrystalline

 $Na_3^{1+}Ir_3^{4.33+}O_8^{2-}$ $d^{4.67}$ non-integer Ir valence

half-metal with low carrier concentration

 $Na_3 Ir_3 O_8 \qquad \begin{array}{c} \text{T. Takayama et al. Sci. Rep. 4, 6818 (2014)} \\ \text{D. Proepper et al. PRL 112, 087401 (2014)} \end{array}$

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure

monocrystalline

 $Na_3^{1+}Ir_3^{4.33+}O_8^{2-}$ $d^{4.67}$ non-integer Ir valence

half-metal with low carrier concentration

weak paramagnetic susceptibility

non-centrosymmetric cubic $P4_132$ ($P4_332$) structure

monocrystalline

 $Na_3^{1+}Ir_3^{4.33+}O_8^{2-} d^{4.67}$ non-integer Ir valence

half-metal with low carrier concentration

weak paramagnetic susceptibility

Why isn't $Na_3Ir_3O_8$ a regular metal?

ΒZ

 $\rightarrow Na_{3}Ir_{3}O_{8}$ is a band insulator in DFT?

ΒZ

ΒZ

 \rightarrow SOI closes the gap and drives $Na_3Ir_3O_8$ into a bad-metal regime

(A) Why is $Na_3Ir_3O_8$ a band insulator in plain DFT?

(A) Why is Na₃Ir₃O₈ a band insulator in plain DFT?
(B) Why does the spin-orbit interaction drive the band insulator into a semi-metal?

• first-order: O-octahedron around Ir atoms

- first-order: O-octahedron around Ir atoms
- edge-sharing octahedra

- first-order: O-octahedron around Ir atoms
- edge-sharing octahedra

- first-order: O-octahedron around Ir atoms
- edge-sharing octahedra

• pseudo kagome lattice in $3D \Rightarrow$ hyper-kagome

model

We have:

• $N_{\text{basis}} = 12 \text{ sites} \times 5 \text{ orbitals} \times 2 \text{ spins} = 120$

model

We have:

- $N_{\text{basis}} = 12 \text{ sites} \times 5 \text{ orbitals} \times 2 \text{ spins} = 120$
- 48 electrons in e_g and 72 electrons in t_{2g}

model

We have:

- $N_{\text{basis}} = 12 \text{ sites} \times 5 \text{ orbitals} \times 2 \text{ spins} = 120$
- 48 electrons in e_g and 72 electrons in t_{2g}

- there are two bonds: $d_{\rm IrO_2}{=}1.98$ Å and $d_{\rm IrO_1}{=}2.05$ Å

- there are two bonds: d_{IrO_2} =1.98 Å and d_{IrO_1} =2.05 Å
- hopping along O₂ is favorable:

- there are two bonds: $d_{\rm IrO_2}{=}1.98$ Å and $d_{\rm IrO_1}{=}2.05$ Å
- hopping along O₂ is favorable:

[110]:
$$d_{yz} - p_z - d_{zx}$$

[011]: $d_{zx} - p_x - d_{xy}$
[011]: $d_{yz} - p_y - d_{xy}$

• k-integrated occupation matrix:

$$\begin{pmatrix} d_{zx} & d_{yz} & d_{xy} \\ +1.324 & -0.595 & -0.596 & d_{zx} \\ -0.595 & +1.324 & -0.597 & d_{yz} \\ -0.596 & -0.597 & +1.325 & d_{xy} \end{pmatrix}$$

- there are two bonds: $d_{\rm IrO_2}{=}1.98$ Å and $d_{\rm IrO_1}{=}2.05$ Å
- hopping along O₂ is favorable:

[110]:
$$d_{yz} - p_z - d_{zx}$$

[011]: $d_{zx} - p_x - d_{xy}$
[011]: $d_{yz} - p_y - d_{xy}$

• k-integrated occupation matrix:

$$\begin{pmatrix} d_{zx} & d_{yz} & d_{xy} \\ +1.324 & -0.595 & -0.596 & d_{zx} \\ -0.595 & +1.324 & -0.597 & d_{yz} \\ -0.596 & -0.597 & +1.325 & d_{xy} \end{pmatrix}$$

ightarrow eigenvalues: 0.13, 1.92, 1.92

- there are two bonds: $d_{\rm IrO_2}{=}1.98$ Å and $d_{\rm IrO_1}{=}2.05$ Å
- hopping along O₂ is favorable:

[110]:
$$d_{yz} - p_z - d_{zx}$$

[011]: $d_{zx} - p_x - d_{xy}$
[011]: $d_{yz} - p_y - d_{xy}$

• k-integrated occupation matrix:

$$\begin{pmatrix} d_{zx} & d_{yz} & d_{xy} \\ +1.324 & -0.595 & -0.596 & d_{zx} \\ -0.595 & +1.324 & -0.597 & d_{yz} \\ -0.596 & -0.597 & +1.325 & d_{xy} \end{pmatrix}$$

- ightarrow eigenvalues: 0.13, 1.92, 1.92
- without SOI: localized, non-hybriziding molecular orbitals (MOs)

- there are two bonds: $d_{\rm IrO_2}{=}1.98$ Å and $d_{\rm IrO_1}{=}2.05$ Å
- hopping along O₂ is favorable:

[110]:
$$d_{yz} - p_z - d_{zx}$$

[011]: $d_{zx} - p_x - d_{xy}$
[011]: $d_{yz} - p_y - d_{xy}$

• k-integrated occupation matrix:

$$\begin{pmatrix} d_{zx} & d_{yz} & d_{xy} \\ +1.324 & -0.595 & -0.596 & d_{zx} \\ -0.595 & +1.324 & -0.597 & d_{yz} \\ -0.596 & -0.597 & +1.325 & d_{xy} \end{pmatrix}$$

- ightarrow eigenvalues: 0.13, 1.92, 1.92
- without SOI: localized, non-hybriziding molecular orbitals (MOs)

↓ The hyper-kagome lattice splits into triangles

2 imes bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $2 \times$ bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $1\times$ antibonding MO: $~~\varepsilon_{ab}=2t^{\prime}$

$$\phi_{ab} = \frac{1}{\sqrt{3}} \left(d_{xy} + d_{yz} + d_{zx} \right)$$

 $2 \times$ bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $1\times$ antibonding MO: $~~\varepsilon_{ab}=2t^{\prime}$

$$\phi_{ab} = \frac{1}{\sqrt{3}} \left(d_{xy} + d_{yz} + d_{zx} \right)$$

One gets per iridium site:

 $2 \times$ bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $1\times$ antibonding MO: $~~\varepsilon_{ab}=2t^{\prime}$

$$\phi_{ab} = \frac{1}{\sqrt{3}} \left(d_{xy} + d_{yz} + d_{zx} \right)$$

One gets per iridium site:

2 (bonding MO) \times 2 (triangles) \times 2 (spins) / 3 (Ir per triangle) = $2\frac{2}{3}$

2 imes bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $1 \times$ antibonding MO: $\varepsilon_{ab} = 2t'$

$$\phi_{ab} = \frac{1}{\sqrt{3}} \left(d_{xy} + d_{yz} + d_{zx} \right)$$

One gets per iridium site:

2 (bonding MO) × 2 (triangles) × 2 (spins) / 3 (Ir per triangle) = $2\frac{2}{3}$ + 1 (localized orbital) × 2 (spins) = 2 = Ir $d^{4.67}$ (Ir^{4.33+})

 $2 \times$ bonding MO: $\varepsilon_{bn} = -t'$, n = 1, 2

$$\phi_{bn} = \frac{1}{\sqrt{3}} \left(d_{xy} + e^{i2\pi n/3} d_{yz} + e^{i4\pi n/3} d_{zx} \right)$$

 $1 \times$ antibonding MO: $\varepsilon_{ab} = 2t'$

$$\phi_{ab} = \frac{1}{\sqrt{3}} \left(d_{xy} + d_{yz} + d_{zx} \right)$$

One gets per iridium site:

2 (bonding MO) × 2 (triangles) × 2 (spins) / 3 (Ir per triangle) = $2\frac{2}{3}$ + 1 (localized orbital) × 2 (spins) = 2 = Ir $d^{4.67}$ (Ir^{4.33+})

Without SOI $Na_3Ir_3O_8$ would be insulating due to the formation of quasi-molecular orbitals on Ir_3 triangles

а

bonding molecular orbital

antibonding molecular orbital

atomic limit

Ir 5d 5

limit of strong spin-orbit interation

summary

✓ Molecular orbital order renders $Na_3 Ir_3 O_8$ a band insulator.

summary

- ✓ Molecular orbital order renders $Na_3 Ir_3 O_8$ a band insulator.
- ✓ Spin-orbit interaction introduces a coupling between MOs on neighboring triangles ⇒ gap closure.

summary

- ✓ Molecular orbital order renders $\rm Na_3 Ir_3 O_8$ a band insulator.
- ✓ Spin-orbit interaction introduces a coupling between MOs on neighboring triangles \Rightarrow gap closure. This is in stark contrast to Sr₂IrO₄ in which SOI creates/enhances the band gap.

summary

- ✓ Molecular orbital order renders $\rm Na_3 Ir_3 O_8$ a band insulator.
- ✓ Spin-orbit interaction introduces a coupling between MOs on neighboring triangles \Rightarrow gap closure. This is in stark contrast to Sr₂IrO₄ in which SOI creates/enhances the band gap.

outlook: substitute Ir by Co or Rh to obtain an insulator tunable with pressure

summary

- ✓ Molecular orbital order renders $Na_3 Ir_3 O_8$ a band insulator.
- ✓ Spin-orbit interaction introduces a coupling between MOs on neighboring triangles \Rightarrow gap closure. This is in stark contrast to Sr₂IrO₄ in which SOI creates/enhances the band gap.

outlook: substitute Ir by Co or Rh to obtain an insulator tunable with pressure

Get decent spaghetti: ask (yourself or your favorite theoretician) for a physical interpretation of the presented *ab-initio* solutions of your problem. Don't be satisfied with "blackbox" results.

JJ Randall et al. JACS **79**, 266-267 (1957) MK Crawford et al. PRB **49**, 9198 (1994) BJ Kim et al. PRL **101**, 076402 (2008) G Jackeli et al. PRL **102**, 017205 (2009)

BJ Kim et al. Science 323, 1329-1332 (2009)

YK Kim et al. Science 345, 187-190 (2014)

J Chaloupka et al. PRL $105,\ 027204$ (2010)

II Mazin et al. PRL 109, 197201 (2012)

Y Okamoto et al. PRL 99, 137207 (2007)

Y Zhou et al. PRL 101, 197201 (2008)

G Chen et al. PRB 78, 094403 (2008)

T Takayama et al. Sci. Rep. 4, 6818 (2014)

D Proepper et al. PRL 112, 087401 (2014)

W Witczak-Krempa et al. Annu. Rev. Condens. Matter Phys. 5, 57-82 (2014)

$$\hat{H}_{SO} = \xi \hat{\mathbf{s}} \cdot \hat{\mathbf{l}} = \frac{\xi}{2} \begin{pmatrix} \hat{l}_z & \sqrt{2}\hat{l}_- \\ -\sqrt{2}\hat{l}_+ & -\hat{l}_z \end{pmatrix}; \quad \xi_d = 0.6 \text{eV}$$

mixes t_{2g} states at each Ir site

$$\langle \boldsymbol{\sigma} | l_z | \boldsymbol{\sigma} \rangle = \begin{pmatrix} \frac{yz & xy & zx}{0 & 0 & i} \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \quad \pm \sqrt{2} \langle -\boldsymbol{\sigma} | l_{\mp} | \boldsymbol{\sigma} \rangle = \begin{pmatrix} \frac{yz & xy & zx | \\ 0 & \mp 1 & 0 & yz \\ \pm 1 & 0 & -i & xy \\ 0 & i & 0 & zx \end{pmatrix}$$

to form a Γ_8 $(j_{\rm eff} = 3/2)$ quartet and a Γ_6 $(j_{\rm eff} = 1/2)$ doublet. d_{yz} and d_{zx} orbitals are coupled by SOC \Rightarrow molecular orbitals on two corner sharing triangles start to interact

$$\chi_{\Gamma_8} = \begin{cases} \sqrt{\frac{5}{6}}\chi_{\frac{5}{2}\pm\frac{5}{2}} + \sqrt{\frac{1}{6}}\chi_{\frac{5}{2}\pm\frac{3}{2}} \\ \chi_{\frac{5}{2}\pm\frac{1}{2}} \\ \chi_{\Gamma_6} = \sqrt{\frac{1}{6}}\chi_{\frac{5}{2}\pm\frac{5}{2}} - \sqrt{\frac{5}{6}}\chi_{\frac{5}{2}\pm\frac{3}{2}} \end{cases}$$

or

$$\chi_{\Gamma_6} = \sqrt{\frac{1}{3}} \left[d_{xy} \chi_{\pm \frac{1}{2}} \mp d_{yz} \chi_{\pm \frac{1}{2}} + i d_{zx} \chi_{\pm \frac{1}{2}} \right]$$

 $Na_3Rh_3O_8$

 t_{2g}

 e_g

$1 \setminus 1$	d_{xy}	d_{xz}	d_{yz}	d_{3z^2-1}	$d_{x^2-y^2}$
d _{xy}	-2.35367	0.02875	-0.05588	0.12330	0.33642
d_{xz}		-2.65602	-0.02875	-0.22377	-0.38758
d_{yz}			-2.35367	-0.22969	-0.27499
d _{3~2-1}				1.26341	0.06304
$d_{x^2-y^2}$					1.33621
x = y					
$1 \setminus 2$	d_{xy}	d_{xz}	d_{yz}	d_{3z^2-1}	$d_{x^2-y^2}$
d_{xy}	0.02870	0.00911	0.07228	0.02506	0.00750
d_{xz}	0.04264	0.16388	0.02192	-0.12583	-0.46722
d_{yz}	0.26937	0.08265	0.01002	0.00007	0.03223
d _{2~2} 1	0.04220	-0.30436	-0.03500	0.13097	-0.18045
$d_{x^2} - u^2$	0.05333	-0.30554	0.00814	-0.10799	-0.07450
x = y					
$1 \setminus 3$	d_{xy}	d_{xz}	d_{yz}	d_{3z^2-1}	$d_{x^2-y^2}$
d	0.10000	0.0000×	0.00911	0 41678	-0.11081
uxy	0.16388	0.08265	0.00011	0.11010	0111001
d_{xy} d_{xz}	0.16388 0.02192	0.08265 0.01002	0.07228	0.01045	-0.03438
d_{xy} d_{xz} d_{yz}	0.16388 0.02192 0.04264	$\begin{array}{c} 0.08265 \\ 0.01002 \\ 0.26937 \end{array}$	0.07228 0.02870	$0.01045 \\ -0.06728$	-0.03438 0.00988
d_{xz} d_{yz} d_{3z^2-1}	$\begin{array}{c} 0.16388 \\ 0.02192 \\ 0.04264 \\ 0.46754 \end{array}$	$0.08265 \\ 0.01002 \\ 0.26937 \\ -0.02794$	0.07228 0.02870 -0.01902	$\begin{array}{c} 0.01045\\ -0.06728\\ -0.14804\end{array}$	-0.03438 0.00988 0.01937
d_{xy} d_{xz} d_{yz} d_{3z^2-1} $d_{x^2-y^2}$	$\begin{array}{c} 0.16388 \\ 0.02192 \\ 0.04264 \\ 0.46754 \\ 0.12463 \end{array}$	0.08265 0.01002 0.26937 -0.02794 -0.01606	$\begin{array}{c} 0.00311\\ 0.07228\\ 0.02870\\ -0.01902\\ 0.01795 \end{array}$	$\begin{array}{c} 0.01045 \\ -0.06728 \\ -0.14804 \\ -0.05309 \end{array}$	$-0.03438 \\ 0.00988 \\ 0.01937 \\ 0.20450$
$\begin{array}{c}d_{xy}\\d_{xz}\\d_{yz}\\d_{3z^2-1}\\d_{x^2-y^2}\end{array}$	$\begin{array}{c} 0.16388\\ 0.02192\\ 0.04264\\ 0.46754\\ 0.12463\end{array}$	0.08265 0.01002 0.26937 -0.02794 -0.01606	0.07228 0.02870 -0.01902 0.01795	0.01045 -0.06728 -0.14804 -0.05309	-0.03438 0.00988 0.01937 0.20450
$\begin{array}{c}d_{xy}\\d_{zz}\\d_{yz}\\d_{3z^2-1}\\d_{x^2-y^2}\\1\setminus 4\end{array}$	$\begin{array}{c} 0.16388\\ 0.02192\\ 0.04264\\ 0.46754\\ 0.12463\\ d_{xy}\end{array}$	0.08265 0.01002 0.26937 -0.02794 -0.01606 d _{xz}	0.07228 0.02870 -0.01902 0.01795 dyz	$\begin{array}{c} 0.01045\\ -0.06728\\ -0.14804\\ -0.05309\\ \mathbf{d}_{3z^2-1} \end{array}$	$\begin{array}{c} -0.03438\\ 0.00988\\ 0.01937\\ 0.20450\\ \mathbf{d}_{x^2-y^2}\end{array}$
$\begin{array}{c} d_{xy}\\ d_{xz}\\ d_{yz}\\ d_{3z^2-1}\\ d_{x^2-y^2}\\ \underline{1\setminus 4}\\ \underline{d_{xy}} \end{array}$	0.16388 0.02192 0.04264 0.46754 0.12463 d _{xy} 0.02870	$\begin{array}{c} 0.08265\\ 0.01002\\ 0.26937\\ -0.02794\\ -0.01606\\ \hline d_{xz}\\ \hline -0.26937 \end{array}$	0.07228 0.02870 -0.01902 0.01795 d_{yz} 0.04264	0.01045 -0.06728 -0.14804 -0.05309 d _{3z²-1} -0.04220	$\begin{array}{c} -0.03438\\ 0.00988\\ 0.01937\\ 0.20450\\ \hline d_{x^2-y^2}\\ 0.05333\\ \end{array}$
$ \begin{array}{r} d_{xy} \\ d_{xz} \\ d_{yz} \\ d_{3z^2-1} \\ d_{x^2-y^2} \\ \hline 1 \setminus 4 \\ \hline d_{xy} \\ d_{xz} \end{array} $	0.16388 0.02192 0.04264 0.46754 0.12463 d _{xy} 0.02870 -0.07228	$\begin{array}{r} 0.08265\\ 0.01002\\ 0.26937\\ -0.02794\\ -0.01606\\ \hline d_{xz}\\ \hline -0.26937\\ 0.01002\\ \end{array}$	0.07228 0.02870 -0.01902 0.01795 d <i>yz</i> 0.04264 -0.02192	0.01045 -0.06728 -0.14804 -0.05309 d _{3z} 2_1 -0.04220 -0.03500	$\begin{array}{c} -0.03438\\ 0.00988\\ 0.01937\\ \textbf{0.20450}\\ \hline \textbf{d}_{x^2-y^2}\\ 0.05333\\ -0.00814 \end{array}$
$ \begin{array}{r} d_{xy} \\ d_{xz} \\ d_{yz} \\ d_{3z^2-1} \\ d_{x^2-y^2} \\ \hline 1 \setminus 4 \\ \hline d_{xy} \\ d_{xz} \\ d_{yz} \end{array} $	0.16388 0.02192 0.04264 0.46754 0.12463 d _{xy} 0.02870 -0.07228 0.00911	$\begin{array}{r} 0.08265\\ 0.01002\\ 0.26937\\ -0.02794\\ -0.01606\\ \hline d_{xz}\\ -0.26937\\ 0.01002\\ -0.08265\\ \end{array}$	0.07228 0.02870 -0.01902 0.01795 dyz 0.04264 -0.02192 0.16388	$\begin{array}{r} 0.11015\\ 0.01045\\ -0.06728\\ -0.14804\\ -0.05309\\ \mathbf{d_{3z^2-1}}\\ -0.04220\\ -0.03500\\ 0.30436 \end{array}$	$\begin{array}{c} -0.03438\\ -0.03438\\ 0.00988\\ 0.01937\\ 0.20450\\ \hline \mathbf{d}_{x^2-y^2}\\ 0.05333\\ -0.00814\\ -0.30554\\ \end{array}$
d_{xz} d_{yz} d_{3z^2-1} $d_{x^2-y^2}$ $1 \setminus 4$ d_{xy} d_{xz} d_{yz} d_{yz}	$\begin{array}{c} 0.16388\\ 0.02192\\ 0.04264\\ 0.46754\\ 0.12463\\ \hline d_{xy}\\ \hline 0.02870\\ -0.07228\\ 0.00911\\ -0.02506\\ \end{array}$	0.08265 0.01002 0.26937 -0.02794 -0.01606 d_xz -0.26937 0.01002 -0.08265 0.00007	0.07228 0.02870 -0.01902 0.01795 dyz 0.04264 -0.02192 0.16388 0.12583	$\begin{array}{r} \textbf{0.1101}\\ \textbf{0.01045}\\ -0.06728\\ \textbf{-0.14804}\\ -0.05309\\ \textbf{d}_{3z^2-1}\\ \hline \textbf{-0.04220}\\ -0.03500\\ \textbf{0.30436}\\ \textbf{0.13097} \end{array}$	$\begin{array}{c} -0.03438\\ -0.03438\\ 0.00988\\ 0.01937\\ 0.20450\\ \hline \\ \mathbf{d}_{x^2-y^2}\\ 0.05333\\ -0.00814\\ -0.30554\\ 0.10799\\ \end{array}$