A Hidden Magnetic Phase in the Sr₂IrO₄ System Revealed Using Nonlinear Optical Measurements

Liuyan Zhao

David Hsieh's Group

Institute of Quantum Information and Matter Division of Physics, Mathematics and Astronomy, Caltech

Spin-Orbit Coupling & Relativistic Quantum Materials Summer School, Vancouver, Oct., 2015

Motivation of Searching for Symmetry Broken States in Sr₂IrO₄

Nonlinear Optical Spectroscopy to Probe Symmetry Properties

• A Non-dipolar Magnetic Order Revealed in Sr₂IrO₄

Electron Correlation & Spin Orbit Coupling

Spin Orbit Coupling

W. Witczak-Krempa et al., Ann. Rev. Condens. Mat. Phys. 5, 57 (2014)

5d Transition Metal Oxides

- Interplay among electron correlations, spin-orbit coupling and crystal electric field (U ~ SOC ~ CEF)
- Spin orbit coupled Mott insulator \rightarrow exotic quantum phases

B.J. Kim *et al.* PRL **101**, 076402 (2012) W. Witczak-Krempa et al., Ann. Rev. Condens. Mat. Phys. 5, 57 (2014)

Iridates – $J_{eff} = \frac{1}{2}$ Mott Insulator

B.J. Kim et al. PRL 101, 076402 (2012)

Sr₂IrO₄ – Single Layer Perovksite Structure

Sr₂IrO₄ – Single Layer Perovksite Structure

Sr_2IrO_4 – Orthorhombic Magnetic ($J_{eff} = \frac{1}{2}$) Structure

Crystal structure: tetragonal point group 4/mmm inversion symmetric Magnetic structure: in-plane canted dipolar AFM orthorhombic mmm1' inversion symmetric

Neutron diffraction

Q. Huang *et al.*, J. Sol. State. Chem. 112, 355 (1994)
M. K. Crawford *et al.*, PRB 49, 9198 (1994)
F. Ye *et al.*, PRB 87, 140406(R) (2013)
C. Dhital *et al.*, PRB 87, 144405 (2013)

Resonant x-ray diffraction

B. J. Kim *et al.*, Science, 323, 1329 (2009)
S. Boseggia *et al.*, J. Phys. CM 25, 422202 (2013)
S. Boseggia *et al.*, PRL 110, 117207 (2013)
M. Moretti Sala *et al.*, PRL 112, 026403 (2014)

Doped Sr₂IrO₄ – Fermi Arcs (*Pseudogap* Behavior)

Surface K Doped Sr₂IrO₄ – d-wave Gap

STM/S results

Y. J. Yan et al., http://arxiv.org/1506.06557 (2015)

Doping

Analogy to Cuprates Phase Diagram

.....

A. Kaminski *et al.* Nature, 416, 610 (2002) S. V. Borisenko *et al.* PRL, 92, 207001 (2004) B. Fauqué *et al.* PRL, 96, 197001 (2006) H. A. Mook *et al.* PRB, 78, 020506 (R) (2008) J. Xia *et al.* PRL, 100, 127002 (2008) Y. Lubashevsky *et al.* PRL, 112, 147001 (2014) M. J. Lawler *et al.* Nature, 466, 347 K. Fujita *et al.* PNAS, 2015 112 (8) 2367

Nonlinear Optics

Multipole expansion of radiation source term

Electric Dipole Magnetic Dipole Electric Quadruple

$$\vec{S} \propto \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}}{\partial t} \right) - \mu_0 \left(\vec{\nabla} \frac{\partial^2 \hat{Q}}{\partial t^2} \right) + \dots$$

Expansion of electric dipolar (**P**) contribution

$$P_{i}(\omega, 2\omega, 3\omega...) = \chi_{ij}^{pe} E_{j}(\omega) + \chi_{ijk}^{pee} E_{j}(\omega) E_{k}(\omega) + \chi_{ijkl}^{peee} E_{j}(\omega) E_{k}(\omega) E_{l}(\omega) + ...$$

$$1^{\text{st} \text{ order}} \qquad 2^{\text{nd} \text{ order}} \qquad 3^{\text{rd} \text{ order}}$$

•
$$\chi_{ij}^{pe}$$
, χ_{ijk}^{pee} and $\chi_{ijkl}^{peee} \iff$ Properties Tensors

M. Fiebig et al. J. O. S. A. (B) 22, 96118 (2005)

Property Tensor & Symmetry Properties

- *Neumann's principle* : A property tensor of a crystal is invariant under the symmetry operation of the crystal.
- Symmetry group \rightarrow independent nonzero tensor elements
- Higher rank response tensor \rightarrow greater symmetry resolution

$$\begin{array}{c} \chi_{ij}^{pe} \\ \text{Tetragonal} & \text{# elem.} \\ \text{Trigonal} & 2 \\ \text{Hexagonal} \\ \begin{bmatrix} xx & 0 & 0 \\ 0 & xx & 0 \\ 0 & 0 & zz \end{bmatrix} \end{array}$$

 \mathbf{n}

$$\chi^{pee}_{ijk}$$

$$\begin{array}{ll} 4 = C_{4} & 7 \\ \overline{4} = S_{4} & 6 \\ 422 = D_{4} & 3 \\ 4mm = C_{4v} & 4 \\ \overline{4}2m = D_{2d} & 3* \\ 4/m = C_{4h} & 0 \\ 4/mmm = D_{4h} & 0 \end{array}$$

Second Harmonic Generation (SHG)

Inversion Symmetry: $(x, y, z) \rightarrow (-x, -y, -z)$		
	$\chi^{\scriptscriptstyle pee}_{\scriptscriptstyle ijk}$	$oldsymbol{\chi}^{pe}_{ij}$
	P(2ω) = χpee E(ω)E(ω)	$P(ω) = χ^{pe} E(ω)$
I. operat.	$-P(2\omega) = I(\chi^{\text{pee}}) (-E(\omega))(-E(\omega))$	$-\mathbf{P}(\boldsymbol{\omega}) = \mathbf{I}(\boldsymbol{\chi}^{\text{pe}}) (-\mathbf{E}(\boldsymbol{\omega}))$
	$-P(2\omega) = I(\chi^{\text{pee}}) E(\omega)E(\omega)$	$P(ω) = I(χ^{pe}) E(ω)$
I. symm.	$I(\chi^{pee}) = \chi^{pee}$	$I(\chi^{pe}) = \chi^{pe}$
	$-P(2\omega) = \chi^{\text{pee}} E(\omega)E(\omega)$	$P(ω) = χ^{pe} E(ω)$
\rightarrow	$\chi^{\text{pee}} = 0$	$\chi^{\mathrm{pe}} \neq 0$
	$\vec{S} \propto \mu_0 \frac{\partial^2 \vec{P}}{\partial t^2} + \mu_0 \left(\vec{\nabla} \times \frac{\partial \vec{M}}{\partial t} \right) - \mu$	$\iota_0\left(\vec{\nabla}\frac{\partial^2\hat{Q}}{\partial t^2}\right) + \dots$

Rotation Anisotropy SHG (RA-SHG)

 $I^{2\omega}\left(\phi,\,T,r
ight)$

- Four polarization geometries $P/S_{in} - P/S_{out}$
- ϕ dependence RA-SHG
- *T* dependence
- *r* dependence SHG imaging

D. Torchinsky et al. Rev. Sci. Inst. 85, 083102 (2014)

L. Zhao *et al.* to appear in Nature Physics (2015) D. Torchinsky, H. Chu, L. Zhao *et al.* PRL, 114, 096404 (2015)

Bulk E. Q. contribution from 4/*m* structure.

Consistent with recent findings of forbidden neutron peaks if **4/mmm**

4/*m* Crystal Structure

D. Torchinsky, H. Chu, L. Zhao *et al.* PRL, 114, 096404 (2015)

2/m1' AFM Structure

RA - SHG on Sr_2IrO_4 at 175K

RA - SHG on Sr_2IrO_4 at 175K

RA - SHG on Sr_2IrO_4 at 175K

SHG Imaging on Sr₂IrO₄ at 295K

I (2ω) [a.u.] 0

SHG Imaging on Sr₂IrO₄ at 175K

I (2ω) [a.u.] 0

Scanning RA–SHG on Sr₂IrO₄ at 175K

Four Domains of the Hidden Order in Sr₂IrO₄

Consistency with Θ_{II} Loop Current Order (magneto-electric)

Relation between Hidden Magnetic Order and AFM in Sr₂IrO₄

 $Sr_2Ir_{1-x}Rh_xO_4$

Hole doping

Y. Cao *et al.,* http://arxiv.org/14406.4978 J. P. Clancy *et al.*, PRB 89, 054409

Suppressed AFM

J. P. Clancy *et al.*, PRB 89, 054409 T. F. Qi *et al.*, PRB, 86, 125105

Pseudogap

Y. Cao et al., http://arxiv.org/14406.4978

T_{Ω} Evolution upon Rh Doping in Sr₂Ir_{1-x}Rh_xO₄

 $\mathbf{x} = \mathbf{0}$

x = 0.04

x = 0.11

 $T(\mathbf{K})$

Hidden Magnetic Order Region in Sr₂Ir_{1-x}Rh_xO₄

- A hidden magnetic order: broken rotation, inversion, time reversal symmetries.
- Four domains.
- Not trivially tied to AFM
 - Possible relation with Pseudogap behavior ?

Acknowledgements

Natalia Perkins

Ron Lifshitz

