

From synthesis to thermodynamics

The interplay of competing crystalline phases and competing electronic phases

000

 $^{\mathcal{H}}\left<\infty\right>$

3

Quantum oscillations in Weyl semi-metals

Quantum oscillatory phenomena from Fermi Arcs

Philip J. M. W. Moll, Nityan Nair, <u>James G. Analytis</u> University of California, Berkeley

GORDON AND BETTY FOUNDATION

Synthesis

- What techniques do we use to make these materials?
- Why are some materials difficult to make and other easy?

• The compounds that one can make are generally determined by where the minimum in the free energy occurs, which in turn depends on a balance of the entropy (generally the change in configurational entropy) and the enthalpy (mostly the gain in energy in bonding).

Binary phase diagrams

Fisher/Shapiro/Analytis Philosophical Magazine 2012

Phase diagram of Cd₃As₂

Congruent and incongruent melts

- In many binary phase diagrams more than one solid phase can be made.
- Intermediate phases can be classed as either
 - congruently melting (melt from a homogeneous solid to a homogeneous liquid)
 - incongruently melting (the solid decomposes on heating to a two-phase mixture of solid and liquid where multiple solid phases may be in equilibrium)

Binary phase diagrams

Fisher/Shapiro/Analytis Philosophical Magazine 2012

Phase diagram of Na₂CO₃-IrO₂

See Ruiz (Sunday afternoon)

PARTI:

Adiabaticity, Quantum Oscillations and the Berry's phase.

Onsager's argument $\oint_C \mathbf{p} \cdot d\mathbf{q} = (n+\gamma)2\pi\hbar$

Adiabatic invariant

Onsager's argument $\oint_C \mathbf{p} \cdot d\mathbf{q} = (n+\gamma)2\pi\hbar$ Adiabatic invariant

 $\mathbf{p} = \hbar \mathbf{k} - e\mathbf{A}$

Onsager's argument

$$\oint_{C} \mathbf{p} \cdot d\mathbf{q} = (n+\gamma)2\pi\hbar$$
Adiabatic invariant

$$\mathbf{p} = \hbar \mathbf{k} - e\mathbf{A}$$

$$\Phi \equiv BA = (n+\gamma)2\pi\frac{\hbar}{e}$$

Onsager's argument

$$\oint_{C} \mathbf{p} \cdot d\mathbf{q} = (n + \gamma) 2\pi\hbar$$
Adiabatic invariant

$$\mathbf{p} = \hbar \mathbf{k} - e\mathbf{A}$$

$$\Phi \equiv BA = (n + \gamma) 2\pi\frac{\hbar}{e}$$

$$= (n + \gamma)\Phi_{0}$$

From flux quantization to energy quantization $A_c = (n + \gamma) 4\pi^2 B / \Phi_0$ $\omega_c = \frac{eB}{m^*}$ $\varepsilon_c = (n + \gamma)\hbar\omega_c$ k_y

From flux quantization to energy quantization $A_c = (n + \gamma) 4\pi^2 B / \Phi_0$ $\omega_c = \frac{eB}{m^*}$ $\varepsilon_c = (n + \gamma)\hbar\omega_c$ k_y

Quantum oscillations are a litmus test for metal purity

- Consider a really clean metal with a Fermi velocity of 1x10⁶m/s and a mean free path 100nm.
- At 10T, the quantum oscillations are suppressed to 1:1000.

Quantum oscillations are a litmus test for metal purity

- Consider a really clean metal with a Fermi velocity of 1x10⁶m/s and a mean free path 100nm.
- At 10T, the quantum oscillations are suppressed to 1:1000.
- Now consider a pretty good metal with a Fermi velocity of 1x10⁶m/s and a mean free path 10nm.
- At 10T, the quantum oscillations are suppressed to 1:10²⁷!

Bulk Quantum oscillations in Bi₂Se₃

Bulk Quantum oscillations in Bi₂Se₃

Bulk Quantum oscillations in Bi₂Se₃

Integer quantum Hall effect

von Klitzing, Dorda and Pepper, PRL 1980

$\gamma = \gamma(0) - \frac{\gamma_B}{2\pi} \approx 1/2 - \frac{\gamma_B}{2\pi}$

Mikitik and Sharlai PRL 1999, also Laura Roth PRB 1966

Integer quantum Hall effect (graphene) R σ_{xy} (4e²/h) 7/2 5/210 n (1012 cm 3/2Graphene σ_{xy} (4e²/h) 1/2 $\rho_{xx}(k\Omega)$ 5 $\varepsilon_n = \pm v_F \sqrt{2ne\hbar B}$ -3/2 -5/2 $\gamma = 0$ -7/2 -22 0 n (1012 cm-2)

P. Kim & Novoselov/Geim Nature 2005

Landau quantization in a 2D square lattice

Hofstadter Butterfly (PRB 1976)

Analytis AMJP 2004
Landau quantization in a 2D square lattice

Hofstadter Butterfly (PRB 1976)

Landau quantization in a 2D square lattice

Landau quantization in a 2D square lattice

Hofstadter Butterfly (PRB 1976)

Analytis AMJP 2004

Landau quantization in a 2D square lattice

Bulk states

Edge states

By breaking the translation symmetry at the boundary, we immediately get edge states that connect the bulk states

Part II: Fermi arcs and Weyl orbits

 $H_{\pm} = \pm v_F (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$

 $H_{\pm} = \pm v_F (k_x \sigma_x + k_y \sigma_y + k_z \sigma_z)$

+ broken translation symmetry

Surface-to-Bulk Transfer

Surface-to-Bulk Transfer

Andrew C. Potter, I.Kimchi, A. Vishwanath, Nature Communications (2014)

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

- The cyclotron "Weyl" orbit involves a real space and k-space path.
- Real space trajectory encloses no flux (Lorentz force free path).
- From a quantum oscillatory point of view, it looks a lot like a 2D orbit with area A_k , or equivalently frequency $f_{1/B}$

Distinguishing features

Quantization of semiclassical orbits

$$\varepsilon_c t_c = (n + \gamma) 2\pi\hbar$$

Quantum oscillations

Distinguishing features

Distinguishing features

Focused Ion Beam microstructuring Cd₃As₂

Focused Ion Beam microstructuring Cd₃As₂

Focused Ion Beam microstructuring Cd₃As₂

Thickness-dependent quantum oscillatory study in Cd₃As₂

New quantum oscillatory frequency at ~60T ($k_0 \sim 0.08 \text{\AA}^{-1}$)

New quantum oscillatory frequency at ~60T ($k_0 \sim 0.08 \text{\AA}^{-1}$)

Note this is approximately the k₀ measured by ARPES

Yi et al. Sci. Rep. 4, 6106 (2014)

Oscillations are 2D

Philip J. W. Moll, JGA et al. arXiv:1505.02817

And grows exponentially with thinness

Philip J. W. Moll, JGA et al. arXiv:1505.02817

Some other, unexpected details

Non-adiabatic corrections in Weyl orbits?

Andrew C. Potter, I.Kimchi, A. Vishwanath, Nature Communications (2014)

We get $\alpha \sim 1.2$

Does the phase of the oscillations depend on thickness?

- Detailed thickness dependence prohibitively difficult at the moment (frequency is too high and would require 1nm thickness dependence)
- So we came up with something different - a triangular geometry.
- The orbit is averaging over all length scales, causing the QOs to destructively interfere.

 $\frac{1}{B_n} = \frac{2\pi n}{f_{1/B}} - \frac{e}{k_{\rm arc}}L$

Does the phase of the oscillations depend on thickness?

- Detailed thickness dependence prohibitively difficult at the moment (frequency is too high and would require 1nm thickness dependence)
- So we came up with something different - a triangular geometry.
- The orbit is averaging over all length scales, causing the QOs to destructively interfere.

Observation	Trivial	Weyl
2D QOs	Y	Y
Frequency ~56T	Coincidence	Y
Amplitude exponential with L	Close	Y
Onset at L=2 <i>l</i>	Coincidence	Y
Parallel surface required	N	Y
Field dependent phase.	Unphysical	Y
Saturation field B*	N	N (not yet)

(Ong group, Science '15)

STM on Cd₃As₂ (Yazdani group, Nat. Mat. '14)

Amplitude onsets at L~2l (Knudsen effect)

Mass corrections in TI surface states?

- Seen in Rashba systems (BiTel) and TIs
- But....
 - 1. the effect seems to go in the wrong direction
 - The g-factor required is 300 (10x anything measured in these compounds)

Analytis et al Nature Physics 2010

Transport and Focused Ion Beam microstructuring

FIB devices

A new 2D quantum oscillation

What about trivial surface states?

Exponential dependence on thickness Onset at L=2lambda

Non-adiabatic corrections

Triangular vs parallel plate device