

Phase diagram and quantum order-by-disorder in the Kitaev K₁-K₂ honeycomb magnet

Ioannis Rousochatzakis, University of Minnesota

Spin Orbit Summer School, Quantum Matter Institute, UBC Vancouver, Canada 24 October 2015

Collaborators

• Natalia Perkins (UMN)

• Stephan Rachel (TU Dresden)

• Johannes Reuter (TU Berlin)

Ronny Thomale (Wuerzburg University)

I.R., J. Reuther, R. Thomale, S. Rachel, N. B. Perkins, PRX (in press) [arXiv: 1506.09185]

Outline

Motivation: Kitaev spin liquid in real materials

 \circ Na₂IrO₃: importance of second-neighbor interaction K₂

Quantum K₁-K₂ model: hidden, gauge-like dualities & symmetries

Phase diagram from Exact Diagonalizations

Physical mechanism of instability: Classical vs Quantum spins

Outlook: back to materials

Kitaev's honeycomb model (S=1/2):

Kitaev's honeycomb model (S=1/2):

$$\mathcal{H} = \sum_{\langle ij \rangle \in \text{red}} S_i^x S_j^x + \sum_{\langle ij \rangle \in \text{green}} S_i^y S_j^y + \sum_{\langle ij \rangle \in \text{blue}} S_i^z S_j^z$$

 \rightarrow Extensive number of conserved fluxes: $W_h = 2^6 S_1^y S_2^z S_3^x S_4^y S_5^z S_6^x$

→Extensive number of conserved fluxes: $W_h = 2^6 S_1^y S_2^z S_3^x S_4^y S_5^z S_6^x$

→Exact solvability: free Majorana fermions in the background of static fluxes Ground state sector: W_h =+1, for all h

→Extensive number of conserved fluxes: $W_h = 2^6 S_1^y S_2^z S_3^x S_4^y S_5^z S_6^x$

→Exact solvability: free Majorana fermions in the background of static fluxes Ground state sector: W_h =+1, for all h

excitations: gapless Majorana fermions and gapped W_h=-1 vortices

Material realizations: strong SOC with 90° oxygen bonding

• the honeycomb Iridates A₂IrO₃ (A=Li, Na):

Jackeli & Khaliullin (2009)

Material realizations: strong SOC with 90° oxygen bonding

• the honeycomb Iridates A₂IrO₃ (A=Li, Na):

ZZ XX

Jackeli & Khaliullin (2009)

O° oxygen bonding: destructive interference
→ J₁=0; but K₁ is finite

xz pz

Material realizations: strong SOC with 90° oxygen bonding

• the honeycomb Iridates A₂IrO₃ (A=Li, Na):

• 90° oxygen bonding: destructive interference \rightarrow J₁=0; but K₁ is finite

Quantum chemistry data for Na₂OIr₃: K₁=-17 meV, J₁=3 meV, Katukuri et al (2014)

Jackeli & Khaliullin (2009)

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j$$

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J_1 = \cos \phi \\ K_1 = 2 \sin \phi$$

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J_1 = \cos \phi \\ K_1 = 2 \sin \phi$$

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + J_1 \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j \qquad J_1 = \cos \phi \\ K_1 = 2 \sin \phi$$

Na213, Li213 & a-RuCl₃: all show magnetic LRO at low T

Na213, Li213 & a-RuCl₃: all show magnetic LRO at low T

 \rightarrow what are the most relevant perturbations in these materials?

Na213, Li213 & a-RuCl₃: all show magnetic LRO at low T

- \rightarrow what are the most relevant perturbations in these materials ?
- → how close are we to the Kitaev spin liquid?

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

Chaloupka, Jackeli & Khaliullin (2013)

φ

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

●*⊖*_{CW}=-125 K

(whereas dominant K₁ coupling is large and FM)

Chaloupka, Jackeli & Khaliullin (2013)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

●*⊖*_{CW}=-125 K

(whereas dominant K₁ coupling is large and FM)

→ further-neighbor exchange (J_2, J_3) ?

Kimchi & You (2011), ...

Chaloupka, Jackeli & Khaliullin (2013)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

●*⊖*_{CW}=-125 K

(whereas dominant K₁ coupling is large and FM)

→ further-neighbor exchange (J_2, J_3) ?

Kimchi & You (2011), ...

Katukuri et al (2014)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

●*⊖*_{CW}=-125 K

(whereas dominant K₁ coupling is large and FM)

→ further-neighbor exchange (J_2, J_3) ?

Kimchi & You (2011), ...

→ other anisotropic interactions?

S. H. Chun et al, Nature Physics 2015

Chaloupka, Jackeli & Khaliullin (2013)

Na213 orders in the zigzag phase (T_N~15 K)
X. Liu et al ('11), Feng Ye et al ('12), S. K. Choi et al ('12)

 \rightarrow J₁ is not the relevant perturbation !

●*⊖*_{CW}=-125 K

(whereas dominant K₁ coupling is large and FM)

→ further-neighbor exchange (J_2, J_3) ?

Kimchi & You (2011), ...

other anisotropic interactions?

S. H. Chun et al, Nature Physics 2015

Superexchange expansion: Sizyuk, Perkins, et al (2014)

- NN Γ is very small in Na213 (consistent with Q. Chem.)
- K₂ is the largest coupling after K₁

Chaloupka, Jackeli & Khaliullin (2013)

Katukuri et al (2014)

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + K_2 \sum_{\ll ij \gg \in \alpha} S_i^{\alpha} S_j^{\alpha}$$

interpolates between honeycomb Kitaev & triangular Kitaev

I.R. et al (2012), Becker et al (2015) Jackeli & Avella(2015)

$$\mathcal{H} = K_1 \sum_{\langle ij \rangle \in \alpha} S_i^{\alpha} S_j^{\alpha} + K_2 \sum_{\ll ij \gg \in \alpha} S_i^{\alpha} S_j^{\alpha}$$

interpolates between honeycomb Kitaev & triangular Kitaev

I.R. et al (2012), Becker et al (2015) Jackeli & Avella(2015)

K₂ kills the exact solvability: W_h are no longer conserved

The quantum K₁-K₂ model: hidden duality & symmetries

 \circ global symmetry in real+spin space: double cover of C_{3v}

\circ global symmetry in real+spin space: double cover of C_{3v}

 \circ global symmetry in real+spin space: double cover of C_{3v}

 \circ global symmetry in real+spin space: double cover of C_{3v}

 4-sublattice decomposition (letters ABCD)

Khaliullin ('05) Chaloupka & Khaliullin ('15)

• duality that maps $(K_1, K_2) \rightarrow (-K_1, -K_2)$

$$D_{yzx} = \begin{pmatrix} A & B & C & D \\ \mathbf{1} & C_{2y} & C_{2z} & C_{2x} \end{pmatrix}$$

 \circ global symmetry in real+spin space: double cover of C_{3v}

 4-sublattice decomposition (letters ABCD)

• duality that maps $(K_1, K_2) \rightarrow (-K_1, -K_2)$

$$D_{yzx} = \begin{pmatrix} A & B & C & D \\ \mathbf{1} & C_{2y} & C_{2z} & C_{2x} \end{pmatrix}$$

gauge-like symmetry

$$S_{xyz} = \begin{pmatrix} A & B & C & D \\ \mathbf{1} & C_{2x} & C_{2y} & C_{2z} \end{pmatrix}$$

The quantum K₁-K₂ model: phase diagram obtained from ED

Kitaev spin liquid regions: very dense spectra !

Kitaev spin liquid regions: very dense spectra !

Magnetic LRO regions: small number of low-lying states

Kitaev spin liquid regions: very dense spectra !

Magnetic LRO regions: small number of low-lying states

Iow-energy spectroscopy: multiplicity & symmetry quantum numbers; large spin gap

transitions out of the Kitaev spin liquid are 1st-order

transitions out of the Kitaev spin liquid are 1st-order

transitions out of the Kitaev spin liquid are 1st-order

short vs. long-range ordering

The quantum K₁-K₂ model: fluxes and spin structure factors

• transitions out of the Kitaev spin liquid are 1st-order

short vs. long-range ordering

The quantum K₁-K₂ model: fluxes and spin structure factors

• transitions out of the Kitaev spin liquid are 1st-order

short vs. long-range ordering

Iocal spin length is very close to 1/2; states seem very classical !

What is the physical mechanism of instability?

Striking aspect:

States seem very classical (local spin length almost 1/2, large spin gap, etc).

Yet, classical limit hosts qualitatively different physics !

Classical minima form lines in momentum space

Classical minima form lines in momentum space

→ sub-extensive number of classical GS's

• Say K₁>0, K₂>0: Х Ζ

• Say K₁>0, K₂>0: Х Ζ

• Say K₁>0, K₂>0: Х Ζ

• sub-extensive number of **sliding** symmetries $\rightarrow 3x2^{L}$ classical minima

• sub-extensive number of sliding symmetries $\rightarrow 3x2^{L}$ classical minima

Actually, there many more ground states: accidental continuous degeneracy

• accidental degeneracy: lifted by thermal fluctuations, as usual

• accidental degeneracy: lifted by thermal fluctuations, as usual

sliding symmetries: cannot break spontaneously at any finite T !
Generalized Elitzur's theorem, Batista & Nussinov (2005)
All these features are very common in compass-like models

• accidental degeneracy: lifted by thermal fluctuations, as usual

sliding symmetries: cannot break spontaneously at any finite T !
 Generalized Elitzur's theorem, Batista & Nussinov (2005)

→ this leaves one possibility (finite T): **nematic** ordering

 C_3 symmetry breaks, system samples all 2^L states of one of the three types of bonds. But no magnetic LRO.

All these features are very common in compass-like models

• accidental degeneracy: lifted by thermal fluctuations, as usual

sliding symmetries: cannot break spontaneously at any finite T !
Generalized Elitzur's theorem, Batista & Nussinov (2005)

→ this leaves one possibility (finite T): **nematic** ordering

 C_3 symmetry breaks, system samples all 2^L states of one of the three types of bonds. But no magnetic LRO.

T=0: sliding symmetries can break, but in all possible ways!

 \rightarrow no isolated Bragg peaks as we found with ED

sliding symmetries: not present for quantum spins !

because **local** time-reversal **not** possible in quantum mechanics !

what's happening?

sliding symmetries: not present for quantum spins !

because local time-reversal not possible in quantum mechanics !

what's happening?

sliding symmetries: not present for quantum spins !

because local time-reversal not possible in quantum mechanics !

→ different ladders must talk to each other via quantum fluctuations !

• Strong coupling limit: $K_{1,2}^z \gg K_{1,2}^{x,y}$

• Strong coupling limit: $K_{1,2}^z \gg K_{1,2}^{x,y}$

• first type of effective term: driven by K₁ perturbations only

• Strong coupling limit: $K_{1,2}^z \gg K_{1,2}^{x,y}$

• first type of effective term: driven by K₁ perturbations only

• effective term is a flux operator: $J_W \hat{W}_h = 2^6 J_W S_1^z S_2^x S_3^y S_4^z S_5^x S_6^y$

$$J_W = \frac{-(K_1^x K_1^y)^2 |K_1^z|}{64(|K_1^z| + 2|K_2^z|)^2(|K_1^z| + 3|K_2^z|)(|K_1^z| + 4|K_2^z|)}$$

• Strong coupling limit: $K_{1,2}^z \gg K_{1,2}^{x,y}$

• first type of effective term: driven by K₁ perturbations only

• effective term is a flux operator: $J_W \hat{W}_h = 2^6 J_W S_1^z S_2^x S_3^y S_4^z S_5^x S_6^y$

$$J_W = \frac{-(K_1^x K_1^y)^2 K_1^z|}{64(|K_1^z| + 2|K_2^z|)^2(|K_1^z| + 3|K_2^z|)(|K_1^z| + 4|K_2^z|)}$$

• Strong coupling limit: $K_{1,2}^z \gg K_{1,2}^{x,y}$

• first type of effective term: driven by K₁ perturbations only

• effective term is a flux operator:
$$J_W \hat{W}_h = 2^6 J_W S_1^z \ S_2^x \ S_3^y \ S_4^z \ S_5^x \ S_6^y$$
$$J_W = \frac{-(K_1^x K_1^y)^2 K_1^z|}{64(|K_1^z| + 2|K_2^z|)^2(|K_1^z| + 3|K_2^z|)(|K_1^z| + 4|K_2^z|)}$$

this term maps to the so-called Toric code model in the square lattice
 A. Kitaev ('03, '06)

effective Ising coupling J₁ between NNN ladders:

effective Ising coupling J1 between NNN ladders:

$$J_1 S_1^z S_7^z$$

$$J_1 = \frac{(K_2^x K_2^y)^2}{8(|K_1^z| + 2|K_2^z|)^2 (2|K_1^z| + 3|K_2^z|)} \operatorname{sgn}(K_2^z)$$

• same process in the triangular Kitaev model Jackeli & Avella(2015)

effective Ising coupling J₂ between NNN ladders:

effective Ising coupling J₂ between NNN ladders:

$$J_2 = \frac{K_1^x K_1^y K_2^x K_2^y}{4(|K_1^z| + 2|K_2^z|)^3} \left[\frac{|K_1^z| + |K_2^z|}{2|K_1^z| + 3|K_2^z|} + \frac{2|K_2^z|}{|K_1^z| + 4|K_2^z|} \right]$$

 $J_2 S_1^z S_4^z$

$$J_{2} = \frac{K_{1}^{x} K_{1}^{y} K_{2}^{x} K_{2}^{y}}{4(|K_{1}^{z}| + 2|K_{2}^{z}|)^{3}} \left[\frac{|K_{1}^{z}| + |K_{2}^{z}|}{2|K_{1}^{z}| + 3|K_{2}^{z}|} + \frac{2|K_{2}^{z}|}{|K_{1}^{z}| + 4|K_{2}^{z}|} \right]$$

$$J_{2} = \frac{K_{1}^{x} K_{1}^{y} K_{2}^{x} K_{2}^{y}}{4(|K_{1}^{z}| + 2|K_{2}^{z}|)^{3}} \left[\frac{|K_{1}^{z}| + |K_{2}^{z}|}{2|K_{1}^{z}| + 3|K_{2}^{z}|} + \frac{2|K_{2}^{z}|}{|K_{1}^{z}| + 4|K_{2}^{z}|} \right]$$

always AFM

large for $\psi = \pi/4$, $3\pi/4$, $5\pi/4$, $7\pi/4$

NN ladders do not talk to each other: true to all orders in pert. theory

NN ladders do not talk to each other: true to all orders in pert. theory

NN ladders do not talk to each other: true to all orders in pert. theory

• gauge-like symmetry: $S_{xyz} = \begin{pmatrix} A & B & C & D \\ \mathbf{1} & C_{2x} & C_{2y} & C_{2z} \end{pmatrix}$

$$(A_{x},A_{y},A_{z}) \rightarrow (A_{x},A_{y},A_{z})$$
$$(D_{x},D_{y},D_{z}) \rightarrow (-D_{x},-D_{y},D_{z})$$

 $(B_x, B_y, B_z) \rightarrow (B_x, -B_y, -B_z)$ $(C_x, C_y, C_z) \rightarrow (-C_x, C_y, -C_z)$

NN ladders do not talk to each other: true to all orders in pert. theory

• gauge-like symmetry:
$$S_{xyz} = \begin{pmatrix} A & B & C & D \\ \mathbf{1} & C_{2x} & C_{2y} & C_{2z} \end{pmatrix}$$

$$(A_x, A_y, A_z) \rightarrow (A_x, A_y, A_z)$$
$$(D_x, D_y, D_z) \rightarrow (-D_x, -D_y, D_z)$$

 $(B_x, B_y, B_z) \rightarrow (B_x, -B_y, -B_z)$ $(C_x, C_y, C_z) \rightarrow (-C_x, C_y, -C_z)$

 $J_{nn} A_z B_z \rightarrow -J_{nn} A_z B_z$, so J_{nn} must vanish identically !

 \rightarrow all magnetic phases can be explained by J₁

 \rightarrow all magnetic phases can be explained by J₁

• on a conceptual level, K₁-K₂ model hosts some very striking & intriguing features:

- several degenerate quantum GS's, some qualitatively different from others.
- LRO states seem very classical. Yet, classical limit hosts very different physics.

Take home messages

• on a conceptual level, K₁-K₂ model hosts some very striking & intriguing features:

- several degenerate quantum GS's, some qualitatively different from others.
- LRO states seem very classical. Yet, classical limit hosts very different physics.

• K₂ must be very relevant at least in Na213:

- stabilizes zigzag state without introducing J_2 and J_3
- accounts for the bond directional character of spin correlations
- can account for a large piece of Curie-Weiss temperature

Take home messages

• on a conceptual level, K₁-K₂ model hosts some very striking & intriguing features:

- several degenerate quantum GS's, some qualitatively different from others.
- LRO states seem very classical. Yet, classical limit hosts very different physics.

• K₂ must be very relevant at least in Na213:

- stabilizes zigzag state without introducing J_2 and J_3
- accounts for the bond directional character of spin correlations
- can account for a large piece of Curie-Weiss temperature

oright of the magnetic moments in Na213: Chun et al, Nat. Phys. ('15) can be accounted for by thermal fluctuations or very small T terms Perkins et al ret al ret
Take home messages

• on a conceptual level, K₁-K₂ model hosts some very striking & intriguing features:

- several degenerate quantum GS's, some qualitatively different from others.
- LRO states seem very classical. Yet, classical limit hosts very different physics.

• K₂ must be very relevant at least in Na213:

- stabilizes zigzag state without introducing J_2 and J_3
- accounts for the bond directional character of spin correlations
- can account for a large piece of Curie-Weiss temperature

Kitaev spin liquid is unfortunately very fragile against K₂.
K₂ can be controlled by chemical substitution of Na.

Take home messages

• on a conceptual level, K1-K2 model hosts some very striking & intriguing features:

- several degenerate quantum GS's, some qualitatively different from others.
- LRO states seem very classical. Yet, classical limit hosts very different physics.

• K₂ must be very relevant at least in Na213:

- stabilizes zigzag state without introducing J_2 and J_3
- accounts for the bond directional character of spin correlations
- can account for a large piece of Curie-Weiss temperature

In direction of the magnetic moments in Na213: Chun et al, Nat. Phys. ('15) can be accounted for by thermal fluctuations or very small r terms Perkins et al

Kitaev spin liquid is unfortunately very fragile against K₂.
K₂ can be controlled by chemical substitution of Na.

Thank you very much for your attention !