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Na2IrO3: importance of second-neighbor interaction K2

Physical mechanism of instability: Classical vs Quantum spins

Motivation: Kitaev spin liquid in real materials

Outlook: back to materials

Phase diagram from Exact Diagonalizations

Quantum K1-K2 model: hidden, gauge-like dualities & symmetries 



Main motivation: Kitaev spin liquid A. Kitaev (2006)
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Kitaev’s honeycomb model (S=1/2):

= Compass model Kugel & Khomskii (1982)
x

y -no magnetic LRO 
-no spin liquid 
-nematic order

Nussinov & van den Brink (’15)
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→Exact solvability: free Majorana fermions in the background of static fluxes 

   Ground state sector:  Wh=+1, for all h
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what’s special about honeycomb?

excitations: gapless Majorana fermions and gapped Wh=-1 vortices

= Compass model Kugel & Khomskii (1982)
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y -no magnetic LRO 
-no spin liquid 
-nematic order

Nussinov & van den Brink (’15)



Material realizations: strong SOC with 90˚ oxygen bonding
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Material realizations: strong SOC with 90˚ oxygen bonding

Katukuri et al (2014)
Quantum chemistry data for Na2OIr3: K1=-17 meV, J1=3 meV, ….
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Kitaev spin liquid is robust against Heisenberg exchange
Chaloupka, Jackeli & Khaliullin (2013)
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

-76.1˚-108.2˚

87.7˚92.2˚
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and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Singh & Gegenwart (’10), Singh et al (’12) π

Na213, Li213 & a-RuCl3: all show magnetic LRO at low T

→  what are the most relevant perturbations in these materials ?

→  how close are we to the Kitaev spin liquid?
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and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Na213 orders in the zigzag phase (TN~15 K)
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2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
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tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
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The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
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2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Neel

stripy

ϕ

liquid

liquid

zigzag

FM

(b)

(a)

FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Figure 2. Phase diagram for the effective spin model in (4) supplemented by second
and third NN couplings J2 and J3, with J = 3 meV, K = �17.5 meV and D = 0 (a) or
D = �1 meV (b), as found by EDs on a 24-site cluster.

significantly different from the set of parameters associated with the other four Ir–Ir ‘bonds’ due
to subtly different oxygen distortions. Together these findings stress the importance of lattice
distortions and symmetry issues and lay the foundation for rigorous ab initio investigations
of unusually large anisotropic interactions such as the Kitaev exchange in strongly spin–orbit
coupled 5d oxides7.

It is known experimentally that Na2IrO3 displays zigzag AF order at low T ’s [8, 9, 24]. It
has been also argued that the longer-range magnetic interactions, up to the second and third Ir
coordination shells, are sizable and AF [8, 16, 31, 35]. We therefore performed ED calculations
for a KH model supplemented with second and third NN couplings J2 and J3 (see appendix B),
on a 24-site cluster with periodic boundary conditions as used in earlier studies [13, 14]. We
disregarded the presence of two structurally and magnetically different sets of Ir–Ir links and
on the basis of the QC results of table 2, used on all bonds J , K and D coupling constants of
3, �17.5 and �1 meV, respectively (approximately averaged over all bonds). For a given set
of J2 and J3 values the dominant order is determined according to the wave number Q = Qmax

giving a maximum value of the static structure factor S(Q). The resulting phase diagram, see
figure 2, shows that the zigzag phase is indeed stable in the region of J2, J3 ⇥ 2 meV. We note
that positive J2 and J3 values of 4–5 meV would be consistent with the experimentally observed
Curie–Weiss temperature ⌃ �125 K [35] using ⇤CW = �S̃(S̃ + 1)(J + 2J2 + J3 + K/3)/kB [8].
Thus we propose that an extended spin Hamiltonian based on the NN anisotropic exchange
terms found from the ab initio QC calculations supplemented by further-neighbor exchange
integrals could provide a realistic starting point to explain the magnetism of Na2IrO3.

7 Detailed QC studies of the anisotropic terms have been so far confined to 3d oxides, where the spin–orbit
interaction is just a small perturbation and the anisotropic coupling parameters are orders of magnitude weaker
than the isotropic Heisenberg exchange [32–34].

7
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Neel

stripy

ϕ

liquid

liquid

zigzag

FM

(b)

(a)

FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see
text). Open/solid circles in the insets indicate up/down spins.
The rectangular box in zigzag pattern (top-left) shows the
magnetic unit cell. (b) Groundstate energy EGS of 24-site
cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
Phase diagram.– In its full parameter space, the KH

model accommodates 6 different phases, best visualized
using the phase-angle ϕ as in Fig. 1(a). In addition to
the previously discussed [16, 21, 22] Néel-AF, stripy-AF,
and SL states near ϕ = 0, −π

4 , and −π
2 , respectively, we

observe 3 more states. First one is “AF” (K > 0) Ki-
taev spin-liquid near ϕ = π

2 . Second, FM phase broadly
extending over the third quadrant of the ϕ-circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ϕ = 3

4π, the most wanted
phase, zigzag-AF, appears occupying almost a quarter
of the phase space. Thanks to the above mapping, it is

understood that the zigzag and Néel states are isomor-
phic, too. In particular, the ϕ = 3

4π zigzag is identical to
Heisenberg-AF of the fictitious spins.
To obtain the phase boundaries, we have diagonal-

ized the model numerically, using a hexagonal 24-site
cluster with periodic boundary conditions. The clus-
ter is compatible with the above 4-sublattice transfor-
mation and ϕ ↔ ϕ̃ mapping. As seen in Fig. 1(b),
the second derivative of the GS energy EGS with re-
spect to ϕ well detects the phase transitions. Three
pairs of linked transition points are found: (87.7◦, 92.2◦)
and (−76.1◦,−108.2◦) for the spin liquid/order transi-
tions around ±π

2 , and (161.7◦,−33.8◦) for the transitions
between ordered phases.
The transitions from zigzag-AF to FM, and from

stripy-AF to Néel-AF are of first order by symmetry;
see very sharp peaks in Fig. 1(b). The spin liquid/order
transitions near ϕ = −π

2 lead to wider and much less
pronounced peaks, suggesting a second (or weakly first)
order transition [16]. On the contrary, liquid/order tran-
sitions around ϕ = π

2 show up as very narrow peaks; on
the finite cluster studied, they correspond to real level
crossings. Nature of these quantum phase transitions re-
mains to be clarified.
While at J = 0 (i.e. ϕ = ±π

2 ) the sign of K is irrel-
evant [20], the stability of the AF- and FM-type Kitaev
spin-liquids against J-perturbation is very different: the
SL phase near π

2 (−π
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the π

2 SL, these are highly quan-
tum zigzag and Néel states, while the SL near −π

2 is
sandwiched by more classical (FM and “fluctuation free”
stripy [16]) states which are energetically less favorable
than quantum SL state.
Exchange interactions in Na2IrO3.– Having fixed the

parameter space (K > 0, J < 0) for zigzag phase, we turn
now to the physical processes behind the model (1). In-
teractions between local moments in Mott insulators arise
due to virtual hoppings of electrons. This may happen
in many different ways, depending sensitively on chemi-
cal bonding, intra-ionic electron structure, etc. The case
of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
dressed in several papers [8, 11, 16, 23]. There are fol-
lowing four physical processes that contribute to K and
J couplings.
Process 1: Direct hopping t′ between NN t2g orbitals.

Since no oxygen orbital is involved, 90◦-bonding is irrel-
evant; the resulting Hamiltonian is H1 = I1 Si ·Sj with
I1 ≃ (23 t

′)2/U [16]. Here, U is Coulomb repulsion be-
tween t2g electrons. Typically, one has t′/t < 1, when
compared to the indirect hopping t of t2g orbitals via
oxygen ions.
Process 2: Interorbital NN t2g − eg hopping t̃. This is

the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-
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Figure 2. Phase diagram for the effective spin model in (4) supplemented by second
and third NN couplings J2 and J3, with J = 3 meV, K = �17.5 meV and D = 0 (a) or
D = �1 meV (b), as found by EDs on a 24-site cluster.

significantly different from the set of parameters associated with the other four Ir–Ir ‘bonds’ due
to subtly different oxygen distortions. Together these findings stress the importance of lattice
distortions and symmetry issues and lay the foundation for rigorous ab initio investigations
of unusually large anisotropic interactions such as the Kitaev exchange in strongly spin–orbit
coupled 5d oxides7.

It is known experimentally that Na2IrO3 displays zigzag AF order at low T ’s [8, 9, 24]. It
has been also argued that the longer-range magnetic interactions, up to the second and third Ir
coordination shells, are sizable and AF [8, 16, 31, 35]. We therefore performed ED calculations
for a KH model supplemented with second and third NN couplings J2 and J3 (see appendix B),
on a 24-site cluster with periodic boundary conditions as used in earlier studies [13, 14]. We
disregarded the presence of two structurally and magnetically different sets of Ir–Ir links and
on the basis of the QC results of table 2, used on all bonds J , K and D coupling constants of
3, �17.5 and �1 meV, respectively (approximately averaged over all bonds). For a given set
of J2 and J3 values the dominant order is determined according to the wave number Q = Qmax

giving a maximum value of the static structure factor S(Q). The resulting phase diagram, see
figure 2, shows that the zigzag phase is indeed stable in the region of J2, J3 ⇥ 2 meV. We note
that positive J2 and J3 values of 4–5 meV would be consistent with the experimentally observed
Curie–Weiss temperature ⌃ �125 K [35] using ⇤CW = �S̃(S̃ + 1)(J + 2J2 + J3 + K/3)/kB [8].
Thus we propose that an extended spin Hamiltonian based on the NN anisotropic exchange
terms found from the ab initio QC calculations supplemented by further-neighbor exchange
integrals could provide a realistic starting point to explain the magnetism of Na2IrO3.

7 Detailed QC studies of the anisotropic terms have been so far confined to 3d oxides, where the spin–orbit
interaction is just a small perturbation and the anisotropic coupling parameters are orders of magnitude weaker
than the isotropic Heisenberg exchange [32–34].
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FIG. 1: (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on ϕ-circle) are ob-
tained by an exact diagonalization. The gray lines inside the
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cluster and its second derivative −d2EGS/dϕ2 revealing the
phase transitions.

and J̃ = −J , revealing a hidden SU(2) symmetry of the
model at K = −J (where the Kitaev term K̃ vanishes).
For the angles, the mapping reads as tan ϕ̃ = − tanϕ−1.
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of present interest (i.e., strong spin-orbit coupling, t52g
configuration, and 90◦-bonding geometry) has been ad-
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the dominant pathway in 90◦-bonding geometry since it
involves strong tpdσ overlap between oxygen-2p and eg or-

Chaloupka, Jackeli & Khaliullin (2013)

→  J1 is not the relevant perturbation !

X. Liu et al (’11), Feng Ye et al (’12), S. K. Choi et al (’12)
Na213 orders in the zigzag phase (TN~15 K)

𝛳CW=-125 K  
  (whereas dominant K1 coupling is large and FM)

New J. Phys. 16 (2014) 000000 V M Katukuri et al

(a) (b)

Figure 2. Phase diagram for the effective spin model in (4) supplemented by second
and third NN couplings J2 and J3, with J = 3 meV, K = �17.5 meV and D = 0 (a) or
D = �1 meV (b), as found by EDs on a 24-site cluster.
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of J2 and J3 values the dominant order is determined according to the wave number Q = Qmax

giving a maximum value of the static structure factor S(Q). The resulting phase diagram, see
figure 2, shows that the zigzag phase is indeed stable in the region of J2, J3 ⇥ 2 meV. We note
that positive J2 and J3 values of 4–5 meV would be consistent with the experimentally observed
Curie–Weiss temperature ⌃ �125 K [35] using ⇤CW = �S̃(S̃ + 1)(J + 2J2 + J3 + K/3)/kB [8].
Thus we propose that an extended spin Hamiltonian based on the NN anisotropic exchange
terms found from the ab initio QC calculations supplemented by further-neighbor exchange
integrals could provide a realistic starting point to explain the magnetism of Na2IrO3.

7 Detailed QC studies of the anisotropic terms have been so far confined to 3d oxides, where the spin–orbit
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• K2 is the largest coupling after K1

superexchange expansion: 
• NN Γ is very small in Na213 (consistent with Q. Chem.)

Sizyuk, Perkins, et al (2014) 
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Exact diagonalizations: finite-size clusters
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The quantum K1-K2 model: phase diagram obtained from ED
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Striking aspect: 
States seem very classical (local spin length almost 1/2, large spin gap, etc). 

Yet, classical limit hosts qualitatively different physics !

What is the physical mechanism of instability?
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(Sx,Sy,Sz) → (Sx,Sy,-Sz) 
along the ladder

Say K1>0, K2>0:

sub-extensive number of sliding symmetries → 3x2L classical minima

Actually, there many more ground states: accidental continuous degeneracy

Batista & Nussinov (2005)
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 T=0: sliding symmetries can break, but in all possible ways! 

→ no isolated Bragg peaks as we found with ED

ΓQ(x)
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Q(y)0

Q(y)

Q(z)

Q(z)0

Generalized Elitzur’s theorem, Batista & Nussinov (2005)
sliding symmetries: cannot break spontaneously at any finite T !
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what’s happening?

z
x

y

(Sx,Sy,Sz) → (Sx,Sy,-Sz) 
along the ladder

→different ladders must talk to each other via quantum fluctuations ! 

sliding symmetries: not present for quantum spins !

because local time-reversal not possible in quantum mechanics !
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this term maps to the so-called Toric code model in the square lattice
A. Kitaev (’03, ’06)
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Ŵ
h

= 26J
W

Sz

1 Sx

2 Sy

3 Sz

4 Sx

5 Sy

6

J
W

=
�(Kx

1K
y

1 )
2|Kz

1 |
64(|Kz

1 |+ 2|Kz

2 |)2(|Kz

1 |+ 3|Kz

2 |)(|Kz

1 |+ 4|Kz

2 |)



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

second type: driven by K2 perturbations only



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

effective Ising coupling J1 between NNN ladders: J1S
z
1S

z
7

second type: driven by K2 perturbations only



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

effective Ising coupling J1 between NNN ladders: J1S
z
1S

z
7

second type: driven by K2 perturbations only

J1 =
(Kx

2K
y

2 )
2

8(|Kz

1 |+ 2|Kz

2 |)2(2|Kz

1 |+ 3|Kz

2 |)
sgn(Kz

2 )



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

effective Ising coupling J1 between NNN ladders: J1S
z
1S

z
7

second type: driven by K2 perturbations only

J1 =
(Kx

2K
y

2 )
2

8(|Kz

1 |+ 2|Kz

2 |)2(2|Kz

1 |+ 3|Kz

2 |)
sgn(Kz

2 )



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

effective Ising coupling J1 between NNN ladders: J1S
z
1S

z
7

second type: driven by K2 perturbations only

J1 =
(Kx

2K
y

2 )
2

8(|Kz

1 |+ 2|Kz

2 |)2(2|Kz

1 |+ 3|Kz

2 |)
sgn(Kz

2 ) large for ψ=±π/2



Quantum order-by-disorder: strong coupling expansion

x

y

z

1

2 3

4

56

7

effective Ising coupling J1 between NNN ladders: J1S
z
1S

z
7

second type: driven by K2 perturbations only

J1 =
(Kx

2K
y

2 )
2

8(|Kz

1 |+ 2|Kz

2 |)2(2|Kz

1 |+ 3|Kz

2 |)
sgn(Kz

2 )

Jackeli & Avella(2015)same process in the triangular Kitaev model

large for ψ=±π/2



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations

effective Ising coupling J2 between NNN ladders: J2S
z
1S

z
4



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations

effective Ising coupling J2 between NNN ladders: J2S
z
1S

z
4

J2 =
Kx

1K
y

1K
x

2K
y

2

4(|Kz

1 |+ 2|Kz

2 |)3


|Kz

1 |+ |Kz

2 |
2|Kz

1 |+ 3|Kz

2 |
+

2|Kz

2 |
|Kz

1 |+ 4|Kz

2 |

�



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations

effective Ising coupling J2 between NNN ladders: J2S
z
1S

z
4

J2 =
Kx

1K
y

1K
x

2K
y

2

4(|Kz

1 |+ 2|Kz

2 |)3


|Kz

1 |+ |Kz

2 |
2|Kz

1 |+ 3|Kz

2 |
+

2|Kz

2 |
|Kz

1 |+ 4|Kz

2 |

�



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations

effective Ising coupling J2 between NNN ladders: J2S
z
1S

z
4

J2 =
Kx

1K
y

1K
x

2K
y

2

4(|Kz

1 |+ 2|Kz

2 |)3


|Kz

1 |+ |Kz

2 |
2|Kz

1 |+ 3|Kz

2 |
+

2|Kz

2 |
|Kz

1 |+ 4|Kz

2 |

�
always AFM



x

y

z

1

2 3

4

56

Quantum order-by-disorder: strong coupling expansion

third type: driven by K1 & K2 perturbations

effective Ising coupling J2 between NNN ladders: J2S
z
1S

z
4

J2 =
Kx

1K
y

1K
x

2K
y

2

4(|Kz

1 |+ 2|Kz

2 |)3


|Kz

1 |+ |Kz

2 |
2|Kz

1 |+ 3|Kz

2 |
+

2|Kz

2 |
|Kz

1 |+ 4|Kz

2 |

�
always AFM

large for ψ=π/4, 3π/4, 5π/4, 7π/4



x

y

z

Quantum order-by-disorder: no coupling between NN ladders

NN ladders do not talk to each other: true to all orders in pert. theory



x

y

z

Quantum order-by-disorder: no coupling between NN ladders

NN ladders do not talk to each other: true to all orders in pert. theory

B

A

C

BC

D A D



x

y

z

Quantum order-by-disorder: no coupling between NN ladders

NN ladders do not talk to each other: true to all orders in pert. theory

S
xyz

=

✓
A B C D
1 C2x C2y C2z

◆
gauge-like symmetry:

(Bx,By,Bz)→(Bx,-By,-Bz) 
(Cx,Cy,Cz)→(-Cx,Cy,-Cz)

(Ax,Ay,Az)→(Ax,Ay,Az) 
(Dx,Dy,Dz)→(-Dx,-Dy,Dz)

B

A

C

BC

D A D



x

y

z

Quantum order-by-disorder: no coupling between NN ladders

NN ladders do not talk to each other: true to all orders in pert. theory

S
xyz

=

✓
A B C D
1 C2x C2y C2z

◆
gauge-like symmetry:

(Bx,By,Bz)→(Bx,-By,-Bz) 
(Cx,Cy,Cz)→(-Cx,Cy,-Cz)

(Ax,Ay,Az)→(Ax,Ay,Az) 
(Dx,Dy,Dz)→(-Dx,-Dy,Dz)

Jnn AzBz  → -Jnn AzBz, so Jnn must vanish identically !

B

A

C

BC

D A D



Quantum order-by-disorder: strong coupling expansion

6

1

2 3

4

5

JW
i j i j

J1 J2

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

ψ / π

J2/r
4

2|J1|/r4

|JW |/r4

z

x

y

→ all magnetic phases can be explained by J1



Quantum order-by-disorder: strong coupling expansion

6

1

2 3

4

5

JW
i j i j

J1 J2

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

ψ / π

J2/r
4

2|J1|/r4

|JW |/r4

z

x

y

→ all magnetic phases can be explained by J1



Take home messages



Take home messages

on a conceptual level, K1-K2 model hosts some very striking & intriguing features: 
 - several degenerate quantum GS’s, some qualitatively different from others. 
 - LRO states seem very classical. Yet, classical limit hosts very different physics.



Take home messages

K2 must be very relevant at least in Na213: 
  - stabilizes zigzag state without introducing J2 and J3 

   - accounts for the bond directional character of spin correlations 
  - can account for a large piece of Curie-Weiss temperature

on a conceptual level, K1-K2 model hosts some very striking & intriguing features: 
 - several degenerate quantum GS’s, some qualitatively different from others. 
 - LRO states seem very classical. Yet, classical limit hosts very different physics.



Take home messages

K2 must be very relevant at least in Na213: 
  - stabilizes zigzag state without introducing J2 and J3 

   - accounts for the bond directional character of spin correlations 
  - can account for a large piece of Curie-Weiss temperature

on a conceptual level, K1-K2 model hosts some very striking & intriguing features: 
 - several degenerate quantum GS’s, some qualitatively different from others. 
 - LRO states seem very classical. Yet, classical limit hosts very different physics.

direction of the magnetic moments in Na213:  
   can be accounted for by thermal fluctuations or very small Γ terms 

Chun et al, Nat. Phys. (’15)

Perkins et al



Take home messages

Kitaev spin liquid is unfortunately very fragile against K2.  
  K2 can be controlled by chemical substitution of Na.

K2 must be very relevant at least in Na213: 
  - stabilizes zigzag state without introducing J2 and J3 

   - accounts for the bond directional character of spin correlations 
  - can account for a large piece of Curie-Weiss temperature

on a conceptual level, K1-K2 model hosts some very striking & intriguing features: 
 - several degenerate quantum GS’s, some qualitatively different from others. 
 - LRO states seem very classical. Yet, classical limit hosts very different physics.

direction of the magnetic moments in Na213:  
   can be accounted for by thermal fluctuations or very small Γ terms 

Chun et al, Nat. Phys. (’15)

Perkins et al



Take home messages

Kitaev spin liquid is unfortunately very fragile against K2.  
  K2 can be controlled by chemical substitution of Na.

Thank you very much for your attention !

K2 must be very relevant at least in Na213: 
  - stabilizes zigzag state without introducing J2 and J3 

   - accounts for the bond directional character of spin correlations 
  - can account for a large piece of Curie-Weiss temperature

on a conceptual level, K1-K2 model hosts some very striking & intriguing features: 
 - several degenerate quantum GS’s, some qualitatively different from others. 
 - LRO states seem very classical. Yet, classical limit hosts very different physics.

direction of the magnetic moments in Na213:  
   can be accounted for by thermal fluctuations or very small Γ terms 

Chun et al, Nat. Phys. (’15)
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