Topological Band and Correlated Insulators

Part 2

David Hsieh Institute for Quantum Information and Matter Department of Physics, Caltech

MPI-UBC Summer School 10/24/2015

Orbital texture of topological surface states

Correlated topological insulators

- Heavy transition metal oxides
- -*f*-electron heavy fermion systems
- Superconducting topological insulators

Cao et al., Nat. Phy. 9, 499 (2013)

Cao et al., Nat. Phy. 9, 499 (2013)

Zhu et al., Phys. Rev. Lett. 110, 216401 (2013)

Layer-dependent spin-orbital texture

DFT 250-layer slab

Zhu et al., Phys. Rev. Lett. **110**, 216401 (2013)

Layer-dependent orbital texture manifested in ARPES

Based on DFT slab calculations

Spin-orbital texture

Zhu et al., Phys. Rev. Lett. **110**, 216401 (2013)

Polarization control of photoelectron spin

y-component of spin

Zhu et al., Phys. Rev. Lett. 112, 076802 (2014)

Polarization control of photoelectron spin

Jozwiak et al., Nat. Phy. 9, 293 (2013)

Correlated topological insulators – 5*d* **transition metal oxides**

- Interplay between electron correlations, crystal electric field and spin-orbit coupling and (U ~ SOC ~ CEF)
- Potential for exotic physics driven by strong SOC (~0.5eV)

J_{eff} = ½ Mott insulators in 5*d* systems

The Ruddlesden-Popper series (Sr_{n+1}Ir_nO_{3n+1})

n = 1 single layer (insulator)

de la Torre et al., PRL 115, 176402 (2015)

The Ruddlesden-Popper series (Sr_{n+1}Ir_nO_{3n+1})

n = 2 bilayer (insulator) Moon et al., PRL 101, 226402 (2008) π LDA + SO + Ub Μ E- $E_{_{F}}$ () Х 0 $Sr_3Ir_2O_7$ -1 π 0 π π Х Г Μ Г E_F - 0.2 eV 0.0 Μ 0.4 е Ц Ш Ш С.8 Γ Х -1.2 -0.5 0.0 0.5 -1.0 1.0 $k_{\parallel} (\pi/a_0)$

King et al., PRB 87, 241106(R) (2013)

The Ruddlesden-Popper series (Sr_{n+1}Ir_nO_{3n+1})

Semi-metallic SrIrO₃ – band structure

Tight-binding model with only J_{eff} = ½ states

Liu *et al.,* ArXiv:1506:03559 (2015)

Semi-metallic \rightarrow semi-conducting transition in SrIrO₃

No bulk single crystals available yet Pseudo-cubic structure difficult to cleave

MBE grown SrIrO₃(001) on LSAT

LDA band structure of SrIrO₃

Liu et al., ArXiv:1501:00654 (2015)

PLD grown SrIrO₃(001) on GdScO₃(110) X-ray diffraction shows strain induced monoclinicity

 $Pbnm \rightarrow P112_1/m$ breaks *n*-glide symmetry

Liu et al., ArXiv:1501:00654 (2015)

Correlated topological insulators – heavy *f***-electron materials**

Correlated topological insulators – heavy *f***-electron materials**

SmB₆

Lu et al., PRL **110**, 096401 (2013)

TABLE I.	The products of parity eigenvalues of the occupied
states for T	RIM points, Γ , X, R, and M in the BZ.

Г	3 <i>X</i>	R	3 <i>M</i>
+	—	+	+

M. Dzero et al., PRL 104, 106408 (2010).

- M. Dzero *et al.*, PRB **85**, 045130 (2012).
- H. Miyazaki *et al.*, PRB **86**, 075105 (2012).
- T. Takimoto et al., J. Phys. Soc. Jpn. 80, 123710 (2011).

SmB₆: A candidate 3D topological Kondo insulator

LDA + Gutzwiller calculation

Lu et al., PRL 110, 096401 (2013)

SmB₆: A candidate 3D topological Kondo insulator

Jiang et al., Nat. Comm. **4**, 3010 (2013) Frantzeskakis et al., Phys. Rev. X **3**, 041024 (2013) Xu et al., PRB **88**, 121102(R) (2013)

Superconducting topological insulators - Cu_xBi₂Se₃

Hao & Ng, PRB **83**, 134516 (2011).

Calculated electronic structure

Calculated ARPES intensity

Cu_xBi₂Se₃

Levy et al., PRL **110**, 117001 (2013).

β -PdBi₂

between PdBi₂ layers

Sakano et al., Nat. Comm. 6, 8595 (2015)

β-PdBi₂

 β -PdBi₂

Towards ultra-low temperature + high-resolution ARPES

Ultrahigh resolution (Shin Lab; ISSP Tokyo)

Shimojima et al., JPSJ 84, 072001 (2015)

Ultralow temperature (1³ beamline @ BESSY II)

Conclusions

Z₂ Topological insulators

Symmetry protected band insulators Topological crystalline insulators Statistical topological insulators Driven topological insulators

Topological exciton condensates

Applications Low-power electronics Spintronics devices Robust multiferroics Engineered TIs Doped graphene Strained semiconductors

Photonic realizations

Topological superconductivity Intrinsic topological superconductors Engineered topological superconductors Fault-tolerant quantum computing New topological materials Topological Kondo insulators Topological Hopf insulators Topological Anderson insulators Topological (Weyl) semimetals Topological Mott insulators (5d transition metal oxides)