Topological Band and Correlated Insulators

Part 1

David Hsieh Institute for Quantum Information and Matter Department of Physics, Caltech

MPI-UBC Summer School 10/24/2015

- The topological band insulator
- Angle-resolved photoemission spectroscopy (ARPES)
 - Working principles and current state-of-the-art
 - Application to 3D topological insulators

Bulk topological distinction

Kane & Mele PRL (2005) ; Bernevig, Hughes & Zhang Science (2007) ; Moore & Balents PRL (2007) ; Roy PRB (2009)

1D edge states of 2D topological insulators

0, Λ are time reversal invariant. Satisfy $\Lambda = -\Lambda \mod \mathbf{G}$

- Topology determined by counting edge Fermi crossings between Λ 's
- v = 1 proposed in graphene but bulk gap too small

Realization of a 2D topological insulator in a quantum well

See also Joshua Folk talk

Bernevig et al., Science **314**, 1757 (2006)

Experimental evidence for the 2D topological insulator

Ę

Konig et al., Science **318**, 766 (2007)

 Λ_i satisfy Λ_i = - Λ_i mod **G**

Fu, Kane & Mele, PRL 98, 106803 (2007)

Bi_{1-x}Sb_x is predicted to be a 3D topological insulator

Ę

For details see Marcel Franz talk

Basics of angle-resolved photoemission spectroscopy

By measuring electron intensity as a function of E_{kin} , ϑ and φ , a momentum resolved energy spectrum is obtained.

See also Marco Grioni talk

ARPES measurement technique

Basics of spin-resolved ARPES

Mott asymmetry left-right scattering of electron depending on its spin

Incident beam spin polarization

$$P \propto \frac{I_L - I_R}{I_L + I_R}$$

See also Marco Grioni talk

Double Mott detector configuration

M. Hoesch (PhD Thesis U. Zurich)

Common Light Sources for ARPES

Plasma Discharge

Hemispherical and Spin-Resolved Detectors

Hemispherical analyzer

Double Mott detector

Sample characterization of Bi_{1-x}Sb_x

Hsieh et al., Nature 452, 970 (2008)

Measuring bulk 3D Dirac fermions with ARPES

Hsieh et al., Nature 452, 970 (2008)

Hsieh et al., Nature **452**, 970 (2008)

Evidence for $v_0 = 1$ gapless surface states on $Bi_{0.9}Sb_{0.1}(111)$

Hsieh et al., Nature **452**, 970 (2008)

Spin-texture of the Bi_{1-x}Sb_x(111) Fermi surface

Spin-momentum locked texture describes π Berry's phase

Hsieh et al., Science 323, 919 (2009)

Roushan et al., Nature **460**, 1106 (2009)

Why the need to go beyond Bi_{1-x}Sb_x?

Bi_{1-x}Sb_xSS crosses E_F 5 times (4 trivial, 1 topological). Bulk gap is small (~ 50 meV). Disorder (random alloy). Cannot be tuned to Dirac neutrality point Occupied surface state Unoccupied surface state

> Fu & Kane, PRB **76**, 045302 (2007) Qi, Hughes, Zhang, PRB **78**, 195424 (2008)

Single topological Dirac cone in Bi₂Se₃ and Bi₂Te₃

Ę

Tuning to bulk insulator regime (transport signatures)

$Bi_{2-\delta}Ca_{\delta}Se_{3}$

Hsieh et al., Nature **460**, 1101 (2009)

Checkelsky et al., PRL 103, 246601 (2009)

Tuning to bulk insulator regime (ARPES signatures)

Hsieh et al., Nature **460**, 1101 (2009)

Time dependence of surface band bending

Hsieh et al., Nature 460, 1101 (2009)

Depleting surface carriers via NO₂ adsorption

ARPES spectra of p-type Bi₂Te₃

Chen et al., Science 325, 178 (2009)

Ē

Hexagonal warped FS predicted by Fu, PRL 103, 266801 (2009)

Reducing bulk carrier density via $(Bi_{1-\delta}Sn_{\delta})_2Te_3$

k (1/Å)

Spin-momentum locking in Bi₂X₃ series

Hsieh et al., Nature 460, 1101 (2009)

Time-of-flight based ARPES

Ē

Collaboration with Prof. Nuh Gedik (MIT)

Simultaneous phase space mapping

Resolved deformation features in Bi₂Se₃

Spin dependent transition rates with circular light

Y.H. Wang, D.H, et al., PRL 107, 207602 (2011)

Spin sensitivity with circular light

Y.H. Wang, D.H, et al., PRL 107, 207602 (2011)

3D vectorial spin analysis

$$\Delta I \equiv I_R - I_L = \alpha \langle S_x \rangle \operatorname{Re}(A_z^* A_y) + |\beta| \langle S_z \rangle \operatorname{Im}(A_x^* A_y)$$

Time reversal symmetry + 3-fold rotational symmetry

Under 60 degree rotation $\langle S_x \rangle \rightarrow \langle S_x \rangle$ while $\langle S_z \rangle \rightarrow \langle S_z \rangle$

$$\Delta I_{(60)} \equiv I_R - I_L = \alpha \langle S_x \rangle \operatorname{Re} \left(A_z^* A_y \right) - \left| \beta \right| \langle S_z \rangle \operatorname{Im} \left(A_x^* A_y \right)$$

In collaboration with Liang Fu 2011

Spin sensitivity with circularly polarized light

<Sx>

0.3

0.2

0.1

0.0

-0.1

-0.2

E (eV)

-180 -90 0 θ(°) $< S_y >$

▲ 0.1 eV ♣ -0.1 eV

Spin texture of entire surface state simultaneously

Y. Wang, D.H. et al., PRL 2011

High energy: Deformed spin texture

Y.H. Wang, D.H, et al., PRL 107, 207602 (2011)

Hexagonally warped spin texture

High energy hexagonal deformed regime

Y. Wang, D.H. et al., PRL 2011

Spin currents driven by circular light

J.W. McIver, D.H., et al., Nature Nano., 7, 96 (2012)

Isolating the photo-galvanic contribution

J.W. McIver, D.H., et al., Nature Nano., 7, 96 (2012)

Photon helicity dependent currents observed in Bi₂Se₃

End of Part 1