

Andrea Damascelli

Spin-orbital entanglement and spin-triplet pairing in Sr₂RuO₄

Max Planck – UBC Quantum Matter Institute

C.N. Veenstra, Z.-H. Zhu, G. Levy, B. Ludbrook, J.A. Rosen, R. Comin M.H. Haverkort, I.S. Elfimov A. Damascelli

Sr₂RuO₄

S. Kittaka, Y. Maeno Kyoto University

Strongly Correlated Electron Systems

- Mott-Hubbard
- Heavy Fermions
- Unconventional SC
- Spin-charge order
- Colossal MR

Strongly Correlated Electron Systems

Mott criterion U>W

Comin & Damascelli, arXiv:1303.1438

Interplay of Coulomb U and SO in 5d iridates

PRL 101, 076402 (2008)

PHYSICAL REVIEW LETTERS

week ending 15 AUGUST 2008

Novel $J_{eff} = 1/2$ Mott State Induced by Relativistic Spin-Orbit Coupling in Sr₂IrO₄

B. J. Kim,¹ Hosub Jin,¹ S. J. Moon,² J.-Y. Kim,³ B.-G. Park,⁴ C. S. Leem,⁵ Jaejun Yu,¹ T. W. Noh,² C. Kim,⁵ S.-J. Oh,¹ J.-H. Park,^{3,4,*} V. Durairaj,⁶ G. Cao,⁶ and E. Rotenberg⁷

Interplay of Coulomb U and SO in 5d iridates

PRL 101, 076402 (2008)

PHYSICAL REVIEW LETTERS

week ending 15 AUGUST 2008

Novel $J_{eff} = 1/2$ Mott State Induced by Relativistic Spin-Orbit Coupling in Sr₂IrO₄

B. J. Kim,¹ Hosub Jin,¹ S. J. Moon,² J.-Y. Kim,³ B.-G. Park,⁴ C. S. Leem,⁵ Jaejun Yu,¹ T. W. Noh,² C. Kim,⁵ S.-J. Oh,¹ J.-H. Park,^{3,4,*} V. Durairaj,⁶ G. Cao,⁶ and E. Rotenberg⁷

Interplay of Coulomb U and SO in 5d iridates

Could be Na₂IrO₃ a clear cut case?

PRL 109, 266406 (2012)

PHYSICAL REVIEW LETTERS

week ending 28 DECEMBER 2012

Na₂IrO₃ as a Novel Relativistic Mott Insulator with a 340-meV Gap

R. Comin,¹ G. Levy,^{1,2} B. Ludbrook,¹ Z.-H. Zhu,¹ C. N. Veenstra,¹ J. A. Rosen,¹ Yogesh Singh,³ P. Gegenwart,⁴ D. Stricker,⁵ J. N. Hancock,⁵ D. van der Marel,⁵ I. S. Elfimov,^{1,2} and A. Damascelli^{1,2,*}

$T_N = 15K \rightarrow distinguish Mott from Slater$

Including Correlations: LDA+SO+U

We must include on-site correlations via U to get the right gap and local ½ moments

Would this work without SO?

Not really..

Na₂IrO₃ is a Relativistic Mott Insulator: Coulomb U and SO coupling cannot be decoupled

Mott criterion U>W

Strongly-correlated electronic states of matter

Late

3d TMO

5d TMO

What about 4d oxides? Let's consider Sr₂RuO₄

Sr₂RuO₄: p-wave Superconductivity

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter ?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

Mackenzie & Maeno, RMP 75, 657 (2003)

Mackenzie et al., PRL 80, 161 (1998)

Sr₂RuO₄: p-wave Superconductivity

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter ?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

Mackenzie & Maeno, RMP 75, 657 (2003)

Luke et al., Nature 394, 558 (1998)

Sr₂RuO₄: Evidence for Spin-triplet Pairing

Knight shift Microscopic spin susceptibility

Ishida et al., Nature (1998)

Phase sensitive measurements verified the odd-parity orbital pairing symmetry due to the formation of spin-triplet Cooper pairs Nelson et al., Science (2004)

μSR Relaxation rate

Time-reversal symmetry breaking

 $P_{u} \| c$

Luke et al., Nature (1998)

Sr₂RuO₄: p-wave Superconductivity

2D perovskite

Unconventional superconductivity

- Pairing mechanism?
- Order parameter ?
- FM-AF fluctuations ?

Rice & Sigrist, JPCM 7, L643 (1995)

Mackenzie & Maeno, RMP 75, 657 (2003)

Maeno et al., JPSJ (2012)

1D ($d_{xz,yz}$) versus 2D (d_{xy}) Superconductivity ?

Band structure calculation: 3 t_{2q} bands crossing E_F

Mazin et al., PRL 79, 733 (1997)

The Fermi Surface of Sr₂RuO₄

de Haas-van Alphen

Bergemann et al., PRL 84, 2662 (2000)

LDA

Mazin *et al.*, PRL **79**, 733 (1997)

ARPES

Damascelli et al, PRL 85, 5194 (2000)

The Fermi Surface of Sr₂RuO₄

de Haas-van Alphen

Bergemann et al., PRL 84, 2662 (2000)

Surface

Damascelli et al, PRL 85, 5194 (2000)

Cleaved at 10K

Damascelli et al, PRL 85, 5194 (2000)

Bulk

Cleaved at 200K

Structural surface reconstruction: rotation of RuO₆ octahedra

R. Matzdorf et al., Science 289, 746 (2000)

Band	n_e^{ARPES}	v_F^{ARPES} (eV Å)	$v_F^{ m LDA+SO}/v_F^{ m ARPES}$	n_e^{dHvA}
α_s	1.721	0.56	4.1	•••
β_s	0.757	0.59	3.6	
γ_s	1.396	0.42	Sufface 5.2	•••
Total	3.874			
α_b	1.760	1.30	1.6	1.781
β_b	0.903	0.80	3.3	0.921
γ_b	1.280	0.76	DUIK 2.9	1.346
Total	3.943			4.048

Importance of Spin-Orbit Coupling in 4d Oxides

Sr₂RuO₄

Damascelli et al, PRL 85, 5194 (2000)

Why LDA for Rh214 does not work as well? Something is missing in LDA!

Correlations? Structure? Surface?

Importance of Spin-Orbit Coupling in 4d Oxides

Kim *et al*, PRL **97**, 106401 (2006) Baumberger *et al*, PRL **96**, 246402 (2006)

Damascelli et al, PRL 85, 5194 (2000)

Why LDA for Rh214 does not work as well? Something is missing in LDA!

$$H = \zeta \Sigma_i \, l_i \cdot s_i$$

Spin-Orbit Coupling

Importance of Spin-Orbit Coupling in 4d Oxides

When is Spin-Orbit important? Degeneracy at E_F!

M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, PRL 101, 026406 (2008)

SO coupling suppresses the band dispersion along c axis

SO coupling suppresses the band dispersion along c axis

SO coupling leads to strong k_z dispersion of quantization axis

Magnetic Anisotropy and Spin Fluctuations in Sr₂RuO₄

VOLUME 92, NU	UMBER 9
---------------	---------

PHYSICAL REVIEW LETTERS

week ending 5 MARCH 2004

Anisotropy of the Incommensurate Fluctuations in Sr₂RuO₄: A Study with Polarized Neutrons

M. Braden,^{1,*} P. Steffens,¹ Y. Sidis,² J. Kulda,³ P. Bourges,² S. Hayden,⁴ N. Kikugawa,⁵ and Y. Maeno⁶

k-dependent enhanced out-of-plane dynamic susceptibility

Spin-resolved Circularly-polarized Photoemission

 Ca_2RuO_4

T. Mizokawa, L.H.Tjeng *et al.* PRL **87**, 077202 (2001)

Sr₂RuO₄ H. Fujiwara, L.H.Tjeng *et al.* (unpublished)

The expectation value of the Spin-Orbit coupling can be experimentally determined by sum rule : Σ diff / $\rho^{00} \propto \langle \Sigma_i |_{z,i} S_{z,i} \rangle$. [G. Van der Laan and B. T. Thole PRB **48**, 210 (1993)]

Spin-orbit coupling is important for both Ca₂RuO₄ and Sr₂RuO₄

PRL 112, 127002 (2014)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2014

Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr₂RuO₄ Revealed by Spin- and Angle-Resolved Photoemission Spectroscopy

C. N. Veenstra,¹ Z.-H. Zhu,¹ M. Raichle,¹ B. M. Ludbrook,¹ A. Nicolaou,^{1,2,7} B. Slomski,^{3,4} G. Landolt,^{3,4} S. Kittaka,^{5,6} Y. Maeno,⁵ J. H. Dil,^{3,4} I. S. Elfimov,^{1,2} M. W. Haverkort,^{1,2,7} and A. Damascelli^{1,2,*}

Band structure + spin-orbit coupling

Fermi surface + spin-orbit coupling

C.N. Veenstra et al. PRL 112, 127002 (2014)

C.N. Veenstra et al. PRL 112, 127002 (2014)

Band structure + spin-orbit coupling

New SO-split eigenstates Circular polarization Spin-resolved ARPES

Spin-orbit splitting 130±30 meV Spin-ARPES confirms SO entanglement

C.N. Veenstra et al. PRL 112, 127002 (2014)

Spin-polarized photoemission using selection rules

Confirming with spin-ARPES

Initial states not
 spin polarized

$$P^{\otimes}S_{ ext{Motts}} = rac{\sqrt{I_U^{\oplus}I_D^{\ominus}} - \sqrt{I_D^{\oplus}I_U^{\ominus}}}{\sqrt{I_U^{\oplus}I_D^{\ominus}} + \sqrt{I_D^{\oplus}I_U^{\ominus}}}$$

- Repeat experiment with both helicities
- Measure a clear polarization asymmetry

C.N. Veenstra et al. PRL **112**, 127002 (2014)

C.N. Veenstra et al. PRL **112**, 127002 (2014)

Spin-Orbit Coupling: K-dependent Entanglement

C.N. Veenstra et al. PRL **112**, 127002 (2014)

Spin-Orbit Coupling: K-dependent Entanglement

K-dependent entanglement of orbital and spin quantum numbers

$$\psi(\mathbf{k},\sigma) = \varphi(\mathbf{k}) \, \phi_{\sigma}^{\text{spin}}$$

$$\psi(\mathbf{k},\sigma) = \alpha \varphi_{\uparrow}(\mathbf{k}) \phi_{\uparrow}^{\rm spin} + \beta \varphi_{\downarrow}(\mathbf{k}) \phi_{\downarrow}^{\rm spin}$$

What is the fate of spin-triplet superconductivity?

$$\Psi(\mathbf{r}_1, \sigma_1, \mathbf{r}_2, \sigma_2) = \varphi(\mathbf{r}_1 - \mathbf{r}_2)\phi_{\sigma_1, \sigma_2}^{\text{spin}}$$

C.N. Veenstra et al. PRL 112, 127002 (2014)

Spin-Orbit Coupling: K-dependent Entanglement

K-dependent entanglement of orbital and spin quantum numbers

$$\psi(\mathbf{k},\sigma) = \alpha \varphi_{\uparrow}(\mathbf{k}) \phi_{\uparrow}^{\rm spin} + \beta \varphi_{\downarrow}(\mathbf{k}) \phi_{\downarrow}^{\rm spin}$$

Breakdown of singlet-triplet Cooper pairs!

C.N. Veenstra et al. PRL 112, 127002 (2014)

Spin-Orbit Coupling: What is the Fate of Cooper Pairs?

C.N. Veenstra et al. PRL **112**, 127002 (2014)

Spin-Orbit Coupling: What is the Fate of Cooper Pairs?

C.N. Veenstra et al. PRL **112**, 127002 (2014)

Sr₂RuO₄: Challenges to Spin-triplet Pairing

Additional SC phase transition Suppressed for field angle $\theta \sim 1^{\circ}$

Magnetic anisotropy driven by spin-orbit coupling?

Spin-Orbital Entanglement and the Breakdown of Singlets and Triplets in Sr₂RuO₄ Revealed by Spin- and Angle-Resolved Photoemission Spectroscopy

C. N. Veenstra,¹ Z.-H. Zhu,¹ M. Raichle,¹ B. M. Ludbrook,¹ A. Nicolaou,^{1,2,7} B. Slomski,^{3,4} G. Landolt,^{3,4} S. Kittaka,^{5,6} Y. Maeno,⁵ J. H. Dil,^{3,4} I. S. Elfimov,^{1,2} M. W. Haverkort,^{1,2,7} and A. Damascelli^{1,2,*}

NO singlets and triplets on most of Fermi surface

C.N. Veenstra et al. PRL 112, 127002 (2014)